SPECTRAL PROPERTIES OF GENERATORS OF THE C_0-GROUPS
OVER TENSOR PRODUCTS OF BANACH SPACES

V. A. Ryazhs'ka and O. V. Lopushans'kii

UDC 517.98

We study the properties of common spectral subspaces of the \(N \) generators of one-parameter \((C_0)\)-groups on different Banach spaces. The method of study is based on the functional calculus in the convolution algebra \(L^1(\mathbb{R}^N) \). We establish a theorem on the equality of the common spectra of the generators and their restrictions to common spectral subspaces.

1. Consider a finite set of Banach spaces \(\{ (X_n, \| \cdot \|_{x^n}) \}_{n=1}^N \) over the field \(\mathbb{C} \) of complex numbers. Let \(\otimes_n X^n \equiv X^1 \otimes \ldots \otimes X^N \) be their tensor product with the projective norm \(\| w \|_{\otimes_n X^n} \equiv \inf \sum_{j=1}^J \| x_j^1 \|_{X^1} \cdot \ldots \cdot \| x_j^N \|_{X^N}, \) where inf is taken over all representations of the element \(w \in \otimes_n X^n \) as a finite sum \(w = \sum_{j=1}^J \otimes_n x_j^j \), in which we have used the notation \(\otimes_n x_j^j \equiv x_j^1 \otimes \ldots \otimes x_j^N \). The corresponding completion of the tensor product will be denoted by \(\widetilde{\otimes_n X^n} \equiv \widetilde{X^1} \otimes \ldots \otimes \widetilde{X^N} \).

Suppose that a one-parameter \((C_0)\)-group is defined on each of the spaces \(X^n \):

\[
R \ni t_n \rightarrow e^{-i t_n A_n} \in L(X^n)
\]

with generator \(-i A_n\), where \(L(X^n) \) is the algebra of bounded linear operators on the space \(X^n \). The operators \(A_n : \mathcal{B}(A_n) \subset X^n \rightarrow X^n \), as is known, are closed and have dense domains \(\mathcal{D}(A_n) \).

On the space \(\widetilde{\otimes_n X^n} \) we assign to the operator \(A_n \) an operator of the form \(\mathfrak{d}_n \equiv I_1 \otimes \ldots \otimes A_n \otimes \ldots \otimes I_N \), which is also closed and has dense domain \(\mathcal{D}(\mathfrak{d}_n) \). The common domain of definition \(\bigcap_{n=1}^N \mathcal{D}(\mathfrak{d}_n) \) of the set \(\mathfrak{d} \equiv [\mathfrak{d}_1, \ldots, \mathfrak{d}_N] \) is dense in the space \(\widetilde{\otimes_n X^n} \) and on it the operators \(\mathfrak{d}_n \) commute with one another [3].

To the operator \(\mathfrak{d}_n \) one can assign the one-parameter \((C_0)\)-group \(e^{-i t_n \mathfrak{d}_n} \equiv I_1 \otimes \ldots \otimes e^{-i t_n A_n} \otimes \ldots \otimes I_N \) with generator \(-i \mathfrak{d}_n \) in the algebra \(L(\widetilde{\otimes_n X^n}) \) of bounded linear operators on the space \(\widetilde{\otimes_n X^n} \). The set of groups \(\{ e^{-i t_n \mathfrak{d}_n} \}_{t_n=1}^N \) commutes over \(\widetilde{\otimes_n X^n} \), so that their product can be written as

\[
e^{-i t \mathfrak{d}} \equiv e^{-i t_1 A_1} \otimes \ldots \otimes e^{-i t_N A_N}, \quad t \cdot \mathfrak{d} \equiv t_1 \mathfrak{d}_1 + \ldots + t_N \mathfrak{d}_N.
\]

Of course, \(R^N \ni t \rightarrow e^{-i t \mathfrak{d}}, \) where \(t \equiv (t_1, \ldots, t_N), \) is an \(N \)-parameter \((C_0)\)-group over the space \(\widetilde{\otimes_n X^n} \).

In the present paper we use the functional calculus developed for the set of operators \(\mathfrak{d} \) in the Fourier-image of the convolution algebra \(L^1(\mathbb{R}^N) \) of integrable functions \(f(t) = f(t_1, \ldots, t_N) \) over the space \(\mathbb{R}^N \) to study the properties of their common spectral subspaces. We assume that each of the groups \(e^{-i t_n A_n} \) is uniformly bounded with respect to \(t_n \in R \) in the algebra \(L(X^n) \).

2. In the complex Banach space \(L^1(\mathbb{R}^N) \) of integrable functions \(f(t) = f(t_1, \ldots, t_N) \) on \(\mathbb{R}^N \) with the norm

\[
\| f \|_{L^1(\mathbb{R}^N)} \equiv \int_{\mathbb{R}^N} |f(t)| \, dt,
\]

we assign to any number \(\nu > 0 \) the subspace of functions

\[
\exp^\nu(D) \equiv \left\{ f \in L^1(\mathbb{R}^N) : \| f \|_{L^\nu} < \infty \right\} \text{ with norm } \| f \|_{L^\nu} \equiv \sum_{|k|=0}^\infty \frac{1}{\nu^{|k|}} \| D^k f \|_{L^1(\mathbb{R}^N)}. \]

1072-3374/99/9602-2973$22.00 ©1999 Kluwer Academic/Plenum Publishers
where \(k = (k_1, \ldots, k_N) \in \mathbb{Z}_+^N, |k| = k_1 + \ldots + k_N, D^k \equiv D_1^{k_1} \cdots D_N^{k_N} \) and \(D_n = \frac{\partial}{\partial t_n} \). Further let

\[
\exp(D) \equiv \bigcup_{\nu > 0} \exp^\nu(D) = \lim \inf_{\nu \to +\infty} \exp^\nu(D)
\]

be the inductive limit with respect to the inclusion \(\exp^\nu(D) \subset \exp^{\nu+1}(D) \).

Similarly, in the complex space \(L^1(R) \) of integrable functions of one variable \(R \ni t_n \to f(t_n) \) with norm \(\| f \| \) and \(D_n = \frac{\partial}{\partial t_n} \), we distinguish the subspaces \(\exp^\nu(D_n) \) and \(\exp(D_n) \). Since the differentiation operator \(D_n \) on \(L^1(R) \) can be regarded as closed, the spaces \(\exp^\nu(D_n) \) are Banach spaces \([2]\). The following structural proposition holds \([2]\).

Lemma 1. The following topological isomorphisms hold:

\[
\exp^\nu(D) \simeq \exp^\nu(D_1) \otimes \cdots \otimes \exp^\nu(D_N), \quad \exp(D) \simeq \exp(D_1) \otimes \cdots \otimes \exp(D_N),
\]

and the first of them is an isometry.

Proof. The isometric isomorphism \(L^1(R^N) \cong L^1(R) \otimes \cdots \otimes L^1(R) \) holds. Indeed, by Fubini's theorem, \(L^1(R^N) \) coincides with \(L^1(R; L^1(R^{N-1})) \), the space of \(L^1(R^{N-1}) \)-valued functions \(R \ni t_n \to f(t_1, \ldots, t_{N-1}, t_n) \in L^1(R^{N-1}) \) with norm

\[
\left\| f(t_1, \ldots, t_{N-1}, t_n) \right\|_{L^1(R^{N-1})} = \int_{R^{N-1}} |f(t_1, \ldots, t_{N-1}, t_n)| dt_1 \ldots dt_{N-1}.
\]

This norm equals the norm of the projective tensor product \(L^1(R) \otimes L^1(R^{N-1}) \), that is, the isometric isomorphism \(L^1(R; L^1(R^{N-1})) \cong L^1(R) \otimes L^1(R^{N-1}) \) holds \([7]\). Repeating such reasoning, we arrive at the required isometry.

The isometric isomorphism (1) now becomes a corollary of the following equalities

\[
\| f \|_v = \sum_{|k| = 0}^{\infty} \frac{1}{\nu^{|k|}} \| D^k f \|_{L^1(R^N)} = \sum_{|k| = 0}^{\infty} \frac{1}{\nu^{|k|}} \inf \left[\sum_j \| f_{1,j}(t_1) \|_{L^1(R)} \cdots \| f_{N,j}(t_N) \|_{L^1(R)} \right] = \inf \sum_j \| f_{1,j} \|_v \cdots \| f_{N,j} \|_v = \| f \| \otimes \exp^\nu(D_n),
\]

where the infimum is taken over all representations of \(f \in \otimes_n \exp^\nu(D_n) \) as \(f(t) = \sum_j f_{1,j}(t_1) \cdots f_{N,j}(t_N) \), a finite sum of products of functions of a single variable \(f_{n,j}(t_n) \in \exp^\nu(D_n) \).

The second topological isomorphism follows from Lemma 7 of \([3]\).

Theorem 1. (a) The spaces \(\exp^\nu(D) \) are Banach spaces and coincide with the restriction to the real space \(R^N \) of the class of entire holomorphic functions \(f(t + is) = f(t_1 + is_1, \ldots, t_N + is_N) \) of exponential type \(< v \) that are uniformly bounded on \(R^N \).

(b) The spaces \(\exp^\nu(D) \) are ideals in the convolution algebra \(L^1(R^N) \) and are invariant under the partial derivative operator \(D_n \). Moreover, each of the operators \(D_n \) on the space \(\exp^\nu(D) \) has norm \(< v \).

(c) The ideal \(\exp(D) \) is continuously and densely embedded in the algebra \(L^1(R^N) \).

Proof. The completeness of \(\exp^\nu(D) \) follows immediately from the isomorphism (1). The proof of the existence of a holomorphic extension of the function of one variable \(f(t_n) \) from the space \(\exp^\nu(D_n) \) to entire functions of exponential type is based on Sobolev's theorem and Bernstein's inequality and is known \([6]\). Therefore the functions \(f(t) \) can also be extended from the tensor product \(\otimes_n \exp^\nu(D_n) \) to entire functions \(f(t + is) \) of exponential type. By this inequality, if the type of the analytically extended function \(f(t + is) \) is \(\mu \), then

\[
\| D^j \|_{L^1(R^N)} \leq \mu^j \| f \|_{L^1(R^N)}
\]

for all \(j \in \mathbb{Z}_+ \). Therefore \(f(t) \in \exp^\nu(D) \) when \(\mu < v \). Conversely, for any function \(f(t) \in \exp^\nu(D) \) we have

\[
\| D_n f \|_v = \nu \sum_{|k| = 1}^{\infty} \frac{1}{\nu^{|k|}} \| D^k f \|_{L^1(R^N)} < \nu \| f \|_v.
\]