ON THE SET OF POSITIVE DEFLECTIONS OF FUNCTIONS
MEROMORPHIC IN THE UNIT DISK

I. E. Chizhikov

UDC 517.53

For an arbitrary \(\lambda \in (0, 1/2) \) we construct a function \(f(z) \) of lower order \(\lambda[f] = \lambda \) that is meromorphic in the disk \(D = \{ z : |z| < 1 \} \) and such that the set \(\Omega(f) \) of positive deflections of the function \(f \) (in the sense of V. P. Petrenko) has positive logarithmic capacity.

We shall adhere to the standard notation of Nevanlinna theory [3]. For any function \(f(z) \) that is meromorphic in the disk \(D = \{ z : |z| < 1 \} \) we set

\[
L(r, a, f) = \begin{cases}
\max_{|z|=r} \frac{1}{|f(z) - a|}, & a \neq \infty, \\
\max_{|z|=r} |f(z)|, & a = \infty.
\end{cases}
\]

In a definition of Petrenko, the deflection of the function \(f(z) \) with respect to the point \(a \) is the quantity \(\beta(a, f) = \liminf_{r \to 1} \frac{L(r, a, f)}{T(r, f)} \). The set \(\Omega(f) = \{ a : \beta(a, f) > 0 \} \) is the set of positive deflections of \(f(z) \). The order \(\rho[f] \) and the lower order \(\lambda[f] \) of the function \(f \) are defined as

\[
\rho[f] = \limsup_{r \to 1} \frac{\ln T(r, f)}{-\ln(1 - r)}, \quad \lambda[f] = \liminf_{r \to 1} \frac{\ln T(r, f)}{-\ln(1 - r)}.
\]

Petrenko ([3], p. 93) has shown that for any \(\lambda \in [0, \infty) \) there exists a function \(f_\lambda(z) \) meromorphic in \(D \) of lower order \(\lambda \) for which the set \(\Omega(f_\lambda) \) has cardinality of the continuum. He also proved ([3], p. 98) that when \(\lambda[f] > 6 \), the set \(\Omega(f) \) has logarithmic capacity zero. On the other hand, for the function \(g(z) = \exp \frac{1 + z}{1 - z} \), we have \(A = \left\{ e^{\theta} : \theta = \cot \frac{\varphi}{2}, \ 0 < \varphi < 2\pi \right\} \subset \Omega(g) \). That is, \(\Omega(g) \) has positive logarithmic capacity, and \(\max T(r, f) < +\infty \).

Petrenko has posed the problem of finding a sharp limit on the growth of meromorphic functions in \(D \) for which the set of positive deflections has logarithmic capacity zero. In 1924 Szegő proved ([1], p. 302) that the logarithmic capacity of any compact set equals its transfinite diameter. Fekete gives the following method of computing the transfinite diameter of a compact set \(E \) ([1], p. 285).

Let \(V(z_1, z_2, \ldots, z_n) = \prod_{1 \leq k < l \leq n} (z_k - z_l), \ n \geq 2, \ z_i \in E, \ i = 1, n, \ V_n = V_n(E) = \max_{z_i \in E} |V(z_1, \ldots, z_n)|, \ d_n = V_n^{2/(n-1)}. \) Then \(d_n \) is a nonincreasing sequence, so that the limit \(\lim_{n \to \infty} d_n = d \) exists. Then \(d \) is the value of the transfinite diameter.

In what follows, brackets in a formula denote the integer part of the expression they contain, and \(C_m^n = \frac{m!}{n!(m-n)!} \) is the binomial coefficient.

Let \(E \) be the set of numbers of the form

\[
x = 1 + \sum_{k=1}^{+\infty} \gamma_k 2^{-[p^k]}, \quad p \in (1, 2), \quad \gamma_k \in \{0, 1\}.
\]

Lemma. The set \(E \) has positive logarithmic capacity.

Proof. It is easy to see that \(E \) is compact. It is obvious that different \(x = x(\gamma_k) \) in \(E \) correspond to different \((\gamma_k) \).
Consider the set M_k of numbers x_n in E for which $y_m(x_n) = 0$ when $m > k$. It is obvious that $n = 1, 2^k$. The total number of unordered pairs (x_n, x_j) with $n \neq j$ is $C_k^{2^k} = 2^{k-1}(2^k - 1)$. We partition the set of these pairs into k subsets G_n as follows. The set G_n contains the pairs of numbers that differ in exactly n binary digits. The number of pairs in each such subset is $C_k^{2^k-1}$. Indeed a choice of n digits in which the numbers of G_n are to differ can be made in $C_k^{2^k-1}$ ways. Since each $x \in M$ belongs to some pair in G_n, one number of the pair can be chosen in 2^{k} ways. This number immediately determines its pair in G_n. Since the pairs are unordered, we obtain $|G_n| = C_k^{2^k-1}$.

We now give a lower bound on the quantity $\prod_{x_i, x_m \in G_n, i \neq m} |x_i - x_m|$. Fix $j \in \{1, 2, \ldots, k - n + 1\}$. The number of pairs of numbers in G_n such that the first binary digit in which the numbers in the pair differ is the $[p/j]$th is $2^{k-1}C_k^{n-1}$. Again, we can allocate the $n - 1$ remaining digits among the $k - 1$ vacant places in C_k^{n-1} ways. Next, choosing one number of the pair in 2^{k} different ways, we count each pair twice.

If the first binary digit in which x_i and x_m differ is the $[p/j]$th, then $|x_m - x_i| \geq 2^{-[p/j]-1}$. Thus,

$$\prod_{x_i, x_m \in G_n, i \neq m} |x_i - x_m| \geq \prod_{j=1}^{k-n+1} 2^{-2^{k-1}C_k^{n-1}([p/j]+1)}.$$

Applying the last estimate, we obtain

$$|V(x_1, \ldots, x_{2^k})| \geq \prod_{n=1}^{k} \prod_{j=1}^{k-n+1} 2^{-2^{k-1}C_k^{n-1}([p/j]+1)} = \prod_{j=1}^{k} \left(\prod_{n=1}^{k-j} 2^{-2^{k-1}C_k^{n-1}([p/j]+1)} \right)^{2^k-1} = \prod_{j=1}^{k} \left(2^{-2^{k-1}j} \right)^{2^k-1} \geq \prod_{j=1}^{k} 2^{-2^k-j} \cdot p_j = 2^{-2^k} \sum_{j=1}^{k} p_j.$$

Hence

$$d_{2^k} \geq \left(2^{-C(p)2^k} \right) \frac{1}{2^k} = 2^{-C(p)/1-2^k}.$$

The assertion of the lemma now follows.

Theorem. For an arbitrary $\lambda \in [0, 1/2)$ there exists a function $f(z)$ meromorphic in $|z| < 1$ such that $\lambda[f] = \rho[f] = \lambda$ and the capacity of the set of Petrenko positive deflections, $\Omega(f) = \{a : \beta(a, f) > 0\}$, is positive.

Proof. In the case $\lambda = 0$ the theorem is trivial: $f(z) = \exp \frac{1+z}{1-z}$. Let $\lambda > 0$. Let us consider a function of the form considered by Petrenko ([3], p. 93). We set $d(z) = \frac{1+z}{1-z}$. For $\theta \in (0, \pi/2)$ we use the notation $\Gamma(\theta) = \{z : |z| < 1, |z + i \cot \theta| = \csc \theta \}$. When $r \geq \tan \frac{\theta}{2}$, $r \in (0, 1)$ let $z_r = z_r(\theta) = \Gamma(\theta) \cap \{z : |z| = r\} \cap \{z : \Re z \geq 0\}$. We assume that $z_r = x_r + iy_r$. From the definition of $\Gamma(\theta)$ we find:

$$|x_r + iy_r + \cot \theta| = \csc \theta \leftrightarrow r^2 + 2y_r \cot \theta = 1.$$

Hence $y_r = \frac{1}{2}(1 - r^2) \tan \theta$, $x_r = \sqrt{1 - 2y_r \cot \theta - y_r^2} = \sqrt{r^2 - ((1 - r^2) \tan^2 \theta)/4}$, $r^2 - x_r^2 = \frac{1}{4}(1 - r^2)^2 \tan^2 \theta$.

For $z_r = re^{i\phi}$ we find a lower bound for $|d(z_r)|$.

$$|d(z_r(\theta))| = \frac{|1 - r^2 + 2ir \sin \phi|}{1 + r^2 - 2r \cos \phi} = \frac{|1 - r^2 + i(1 - r^2) \tan \theta|}{(1 - r)^2 + 2(r - x_r)} = \frac{|1 + i \tan \theta|}{1 + \frac{r^2}{(1 + r^2) \tan^2 \theta}}$$

$$\geq \frac{1 + r}{1 - r} \frac{|1 + i \tan \theta|}{(1 + r^2) \tan^2 \theta} \geq \frac{1}{1 + 2 \tan^2 \theta} \frac{K_1(\theta)}{1 - r}.$$

2981