ASYMPTOTICALLY GAUSSIAN DISTRIBUTION FOR RANDOM PERTURBATIONS OF ROTATIONS OF THE CIRCLE

M. Denker and M. Gordin

Let $T_{\varepsilon, \omega}$ be a transformation of the two-dimensional torus \mathbb{T}^2 given by the formula $T_{\varepsilon, \omega} : (x, y) \rightarrow (2x, y + \omega + \varepsilon x) \mod 1$. A version of the functional central limit theorem is formulated for variables of the form $n^{-1/2} \sum_{k=0}^{n-1} f \circ T_{\varepsilon, \omega}^k$, where ε is an irrational number and f belongs to a class of real-valued functions on \mathbb{T}^2 described in terms of ε. The proof will be published elsewhere. Bibliography: 7 titles.

S. Siboni [7] introduced the family $\{T_{\varepsilon, \omega}\}$ of transformations of the two-dimensional torus \mathbb{T}^2, where $\varepsilon \in \mathbb{R}$ and $\omega \in \mathbb{T} = \mathbb{R}/\mathbb{Z}$, defined by

$$T_{\varepsilon, \omega} : (x, y) \rightarrow (2x, y + \omega + \varepsilon x) \mod 1.$$

Here x, y are coordinates on the torus $\mathbb{T}^2 = \mathbb{T} \times \mathbb{T}$ mapping it onto $[0, 1) \times [0, 1)$. Thus, $T_{\varepsilon, \omega}$ is a skew product with the endomorphism $S : x \mapsto 2x$ of the circle \mathbb{T} in the base and with a rotation by an angle (depending on x) in a fiber (also a circle) over a point $x \in \mathbb{T}$. The Haar measure on \mathbb{T}^2 is invariant with respect to $T_{\varepsilon, \omega}$. This family was proposed in [7] as a model of a random perturbation of frequency in a Hamiltonian single-frequency system. It was also proved there that $T_{\varepsilon, \omega}$ is a mixing transformation if and only if ε is irrational. As to further investigation of ergodic and probabilistic properties, in particular, of the central limit theorem, these questions are mentioned in [7] (for example, a physical interpretation of the variance of the limiting Gaussian distribution in a hypothetical central limit theorem is given), but left open. W. Parry proved in [5] that $T_{\varepsilon, \omega}$ is an exact endomorphism if ε is irrational. A natural question in the framework of measure-theoretical classification of the transformations $T_{\varepsilon, \omega}$ is whether any such transformation with irrational ε is a unilateral Bernoulli shift. It turned out that this question is not trivial. Under some additional assumptions imposed on ε, the affirmative answer was given in [6].

In the present note, a version of the functional limit theorem for $T_{\varepsilon, \omega}$ is announced. The proof is based on the martingale approximation method which goes back to [2]. This approach allows us to bypass the basic problems of the ergodic theory of transformations $T_{\varepsilon, \omega}$ and only requires irrationality of ε. The class of functions to which our theorem can be applied depends on the Diophantine properties of ε.

MAIN STATEMENT

Let (X, \mathcal{M}, P) be a probability space; let $T : X \rightarrow X$ be a measurable P-preserving transformation, and f a measurable real-valued function. We construct, for any $n \geq 1$, a random piecewise-linear function $J_n f$ on $[0, 1]$ that is linear on intervals of the form $[(m-1)/n, m/n]$ and takes value $n^{-1/2} \sum_{k=0}^{n-1} f \circ T^k$ at m/n for $m = 1, \ldots, n$ (we mean that $J_n f(0) = 0$). We say that f satisfies the functional central limit theorem with limiting variance σ^2 if the distribution of the random piecewise-linear functions $J_n f$, regarded as a measure on the space $C[0, 1]$ of continuous functions on $[0, 1]$, weakly converges to the Wiener measure with parameter value σ^2 as $n \rightarrow \infty$. Here the parameter of the Wiener measure is the variance of the value $w(1)$ of the corresponding Wiener process $w(\cdot)$, and weak convergence means here, as usual, the convergence of integrals for any bounded continuous function.

Now set $X = \mathbb{T}^2$, $\mathcal{M} = \mathbb{B}^2$, the Borel σ-field of \mathbb{T}^2, $T = T_{\varepsilon, \omega}$ for certain ω and ε, and let P be the Haar measure on \mathbb{T}^2 (an integral with respect to it will be written in the form $\int f(x, y) dx dy$). L_2-spaces of functions with respect to the Haar measure on \mathbb{T}^2 and T are denoted, respectively, by $L_2(\mathbb{T}^2)$ and $L_2(T)$.

We define $f_k \in L_2(T)$, for any $f \in L_2(\mathbb{T}^2)$ and $k \in \mathbb{Z}$, by the relation

$$(f_k)(x) = \int_{T} \exp(-2\pi i k y) f(x, y) dy,$$
where the integral is calculated with respect to the Haar measure on \mathbb{T}. For any $k \in \mathbb{Z}$, an operator $W_k = W_{k, \epsilon, \omega}$ acts on $L^2(\mathbb{T})$ according to

$$(W_k g)(x) = \frac{1}{2} \left(g\left(\frac{x}{2}\right) \chi_k \left(-\frac{x}{2} - \epsilon\right) + g\left(\frac{x+1}{2}\right) \chi_k \left(-\frac{x+1}{2} - \epsilon\right) \right),$$

where $\chi_k(x) = \exp(2\pi i k x)$.

Further, let \mathcal{B}_n be a σ-field of subsets of \mathbb{T} generated by all intervals of the form $\{x : l/2^n \leq x < (l + 1)/2^n\}$, where $0 \leq l \leq 2^n - 1$, and let $L_2(\mathcal{B}_n)$ be a subspace of $L_2(\mathbb{T})$ consisting of all \mathcal{B}_n-measurable functions.

We denote by $E(\cdot | \mathcal{B}_n)$ the conditional expectation operator with respect to \mathcal{B}_n.

Theorem. If a real-valued function $f \in L^2(\mathbb{T}^2)$ and an irrational real number $\epsilon \in \mathbb{R}$ are such that the following assumptions hold:

1. \(\int_{\mathbb{T}^2} f(x, y) \, dx \, dy = 0 \),
2. \(\sum_{k \in \mathbb{Z}} \left(\sum_{n \geq 0} ||f_k - E(f_k | \mathcal{B}_n)||_{L^2(\mathbb{T})} \right)^2 < \infty \),
3. \(\sum_{k \in \mathbb{Z}} k^2 ||f_k||^2_{L^2(\mathbb{T})} < \infty \),
4. \(\sum_{k \in \mathbb{Z}, k \neq 0} < 2k\epsilon >^{-4} ||f_k||^2_{L^2(\mathbb{T})} < \infty \)

(\(< \cdot >\) denotes the distance to the nearest integer), then for the function f and transformations $T_{k, \epsilon}$ the functional central limit theorem is valid. The parameter σ^2 of the limiting Gaussian process is given by

$$
\sigma^2 = \sum_{k \in \mathbb{Z}} \left(\sum_{n \geq 0} ||W_k f_k||^2_{L^2(\mathbb{T})} - \sum_{n \geq 1} ||W_k f_k||^2_{L^2(\mathbb{T})} \right),
$$

where the series on the right-hand side is absolutely convergent.

Corollary. The functional central limit theorem may be applied if, besides assumptions (1) and (2) of the theorem, the following requirements (5) and (6) are also satisfied:

5. \(\epsilon > 0, \sum_{k \in \mathbb{Z}} k^4 + 4 ||f_k||^2_{L^2(\mathbb{T})} < \infty \);
6. \(\epsilon \in \mathbb{R} \) is such that for some $\delta > 0$ and $C = C(\epsilon, \delta) > 0$ the inequality $|qe - p| > C |q|^{-(1+\delta)}$ holds for any p and $q \in \mathbb{Z}, q > 0$.

It is obvious that (3) follows from (5), and (4) follows from (5) and (6).

We note that (5), in turn, is satisfied for any irrational algebraic ϵ (a theorem by Thue--Siegel--Roth, see [4]), and also for almost all $\epsilon \in \mathbb{R}$ (as a consequence of a stronger measure-theoretical result in Diophantine approximation theory [4]). Under the assumptions of the theorem stated above, a more detailed conclusion can also be made which shows that the separate harmonics in the expansion $f(x, y) = \sum_{k \in \mathbb{Z}} f_k(x) \exp(2\pi i k y)$ give independent contributions to the limiting Gaussian distribution. The precise statement of this assertion and the proof will be published elsewhere.

This work was performed as part of the Russian–German project DFG-RFBR, grant 96-01-00096. The second author was also supported by the Russian Foundation for Basic Research, grant 96-01-00672.

Translated by M. Gordin.

REFERENCES