On the spectrum of resolvable orthogonal arrays invariant under the Klein group K_4

C. C. Lindner, R. C. Mullin and D. R. Stinson

Abstract. It is shown that there exists a resolvable n^2 by 4 orthogonal array which is invariant under the Klein 4-group K_4 for all positive integers n congruent to 0 modulo 4 except possibly for $n \in \{12, 24, 156, 348\}$.

0. Introduction

This note uses the terminology and notation of [2]. In what follows an orthogonal array will always be an $n^2 \times 4$ orthogonal array. An orthogonal array which is invariant under conjugation by the Klein 4-group but by no larger subgroup of S_4 (the symmetric group on $\{1, 2, 3, 4\}$) is called a K_4 orthogonal array (KOA). In [1] it is shown that the spectrum for KOAs is precisely the set of all $n \equiv 0$ or 1 (mod 4) except 5 and possibly 12 and 21.

Now a bit of reflection reveals that the rows of a KOA must look like (a, a, a, a), (a, a, b, b), (a, b, a, b), (a, b, b, a), or (a, b, c, d) where a, b, c and d are distinct. Hence, if (P, B) is a KOA, then the orbits of K_4 acting on B look like

\[
\{(a, a, a, a)\}, \\
\{(a, a, b, b), (b, b, a, a)\}, \\
\{(a, b, a, b), (b, a, b, a)\}, \\
\{(a, b, b, a), (b, a, a, b)\}, \text{ or} \\
\{(a, b, c, d), (b, a, d, c), (c, d, a, b), (d, c, b, a)\}.
\]
We will denote the orbit containing \((x, y, z, w)\) by \([[(x, y, z, w)]\). Two orbits
\([[(x_1, y_1, z_1, w_1)]\) and
\([[(x_2, y_2, z_2, w_2)]\) are disjoint provided \(\{x_1, y_1, z_1, w_1\}\) and
\(\{x_2, y_2, z_2, w_2\}\) are disjoint. A parallel class of \(B\) is a collection of pairwise disjoint
orbits which partition \(P\) and \(B\) is said to be resolvable provided \(B\) can be partitioned
into parallel classes. In what follows we will abbreviate resolvable KOA to RKOA.

The purpose of this note is to construct an \(n^2 \times 4\) RKOA for every \(n = 0 \mod 4\) except for 4 cases.

1. Construction of RKOAs.

CONSTRUCTION 1.1. Let \((Q, \circ)\) be a self-orthogonal quasigroup of order \(v\) (which we will always take to be idempotent) having an orthogonal mate \((Q, \circ)\) which
is commutative. We make no assumptions concerning \((Q, \circ)\) other than the fact that
it is commutative (and orthogonal to \((Q, \circ)\) of course). Set \(S = Q \times \{1, 2, 3, 4\}\) and
define a collection of rows \(R\) of \(S\) as follows:

1. For all \(a \neq b \in Q\),
 \(i\) \(\begin{align*} &\text{if } a \circ b \neq c = x, \\
&\text{then } ((a, 1), (b, 1), (c, 2), (c, 2)) \in R \iff \{b, c\} \subseteq \{a\}\end{align*}\)
 \(\text{and}
 \begin{align*} &\text{if } a \circ b \neq c = x, \\
&\text{then } ((a, 1), (b, 2), (c, 2), (c, 2)) \in R \iff \{b, c\} \subseteq \{a\}\end{align*}\)
 \(\text{and}
 \begin{align*} &\text{if } a \circ b \neq c = x, \\
&\text{then } ((a, 1), (b, 3), (c, 2), (c, 2)) \in R \iff \{b, c\} \subseteq \{a\}\end{align*}\)

2. Let \((S, G, B)\) be a resolvable transversal design with groups
\(G = \{Q \times \{1\}, Q \times \{2\}, Q \times \{3\}, Q \times \{4\}\}\) and blocks \(B\) containing as one parallel class
of blocks
\(\pi = \{(a, 1), (a, 2), (a, 3), (a, 4)\} \text{ if } a \in Q\). Let \(\begin{align*} &\text{if } a \neq b \in Q\text{ and } \{a, b\} \subseteq \{1, 2, 3, 4\}, \\
&\text{if } a \neq b \in Q\text{ and } \{a, b\} \subseteq \{1, 2, 3, 4\}, \\
&\text{if } a \neq b \in Q\text{ and } \{a, b\} \subseteq \{1, 2, 3, 4\},
\end{align*}\)

3. \(\begin{align*} &\text{if } a \neq b \in Q\text{ and } \{a, b\} \subseteq \{1, 2, 3, 4\}, \\
&\text{if } a \neq b \in Q\text{ and } \{a, b\} \subseteq \{1, 2, 3, 4\}, \\
&\text{if } a \neq b \in Q\text{ and } \{a, b\} \subseteq \{1, 2, 3, 4\},
\end{align*}\)

4. \(\begin{align*} &\text{if } a \neq b \in Q\text{ and } \{a, b\} \subseteq \{1, 2, 3, 4\}, \\
&\text{if } a \neq b \in Q\text{ and } \{a, b\} \subseteq \{1, 2, 3, 4\}, \\
&\text{if } a \neq b \in Q\text{ and } \{a, b\} \subseteq \{1, 2, 3, 4\},
\end{align*}\)

It is immediate that the orthogonal array \((S, R)\) is invariant under conjugation by
at least \(K_4\). To see that \((S, R)\) is not invariant under conjugation by any larger
subgroup of \(S_4\) it suffices to show that \((S, R)\) is not invariant under conjugation
by the alternating group \(A_4\). However this is obvious since if \(a \neq b\), then
\((a, 1), (b, 1), (a, 2), (b, 2)\) \(\in R\) but \((b, 1), (a, 2), (a, 1), (b, a, 2)\) \(\notin R\). We now
show that, in fact, \((S, R)\) is resolvable. So, let \(x \in Q\) and set \(X = \{a \mid a \circ a = x\}\) and
\(Y = \{b \in Q \mid b \circ c = c \circ b = x\}\). Then of course \(X \cup Y\) is a partition of \(Q\), since \((Q, \circ)\)
is commutative. (We remark that \(X\) might well be empty.) Now define three parallel
classes \(\pi_1(x), \pi_2(x), \pi_3(x)\) in the following manner:

\(\begin{align*} &\pi_1(x) = \{(a, 1), (a, 2), (a, 3), (a, 4)\} \cup \{\text{orbits of type } (1-i) \text{ iff } \{b, c\} \subseteq Y\}, \\
&\pi_2(x) = \{(a, 1), (a, 3), (a, 4), (a, 2)\} \cup \{\text{orbits of type } (1-ii) \text{ iff } \{b, c\} \subseteq Y\}, \text{ and} \\
&\pi_3(x) = \{(a, 1), (a, 4), (a, 2), (a, 3)\} \cup \{\text{orbits of type } (1-iii) \text{ iff } \{b, c\} \subseteq Y\}.
\end{align*}\)