Limit Theorems for Compact Two-Point Homogeneous Spaces of Large Dimensions

Michael Voit

Received September 15, 1994; revised September 25, 1995

Let \mathbb{K} be the field \mathbb{R}, \mathbb{C}, or \mathbb{H} of real dimension v. For each dimension $d \geq 2$, we study isotropic random walks $(Y_t)_{t \geq 0}$ on the projective space $\mathbb{P}^d(\mathbb{K})$ with natural metric D where the random walk starts at some $x_0^d \in \mathbb{P}^d(\mathbb{K})$ with jumps at each step of a size depending on d. Then the random variables $X_t^d := \cos D(Y_t^d, x_0^d)$ form a Markov chain on $[-1, 1]$ whose transition probabilities are related to Jacobi convolutions on $[-1, 1]$. We prove that, for $d \to \infty$, the random variables $(vd/2)(X_t^d) + 1$ tend in distribution to a noncentral χ^2-distribution where the noncentrality parameter depends on relations between the numbers of steps and the jump sizes. We also derive another limit theorem for $\mathbb{P}^d(\mathbb{K})$ as well as the d-spheres S^d for $d \to \infty$.

KEY WORDS: Projective spaces; d-spheres; isotropic random walks; central limit theorem; noncentral χ^2-distribution; orthogonal polynomials; hypergroups.

1. LIMIT THEOREMS FOR ISOTROPIC RANDOM WALKS ON COMPACT TWO-POINT HOMOGENEOUS SPACES

1.1. Isotropic Random Walks on Compact Two-Point Homogeneous Spaces

Let (X, D) be a two-point homogeneous space, i.e., X is a locally compact metric space having a locally compact group G of isometries of X such that for all $x, y, u, v \in X$ with $D(x, y) = D(u, v)$ there is some $g \in G$ with $g(x) = u$ and $g(y) = v$. Then the stabilizer H of some fixed $x_0 \in X$ is a compact subgroup of G, the homogeneous space G/H can be identified with X, and the

1 Mathematisches Institut, Universität Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany.

0894-9840(96/0400-0353\times09.50/0 © 1996 Plenum Publishing Corporation
double coset space $G//H$ with the space of all orbits when H acts on X. Moreover, if $G//H$ carries the quotient topology, then $\varphi: G//H \to [0, \infty[$, $HgH \mapsto D(gH, H)$ establishes a natural homeomorphism between $G//H$ and the set $I := \varphi(G//H) \subset [0, \infty[$.

In this paper we are interested in compact connected two-point homogeneous spaces X. These spaces were classified by Wang. They are equal either to a d-sphere S^d for $d \geq 1$ or to a projective space $\mathbb{P}^d(\mathbb{R})$, $\mathbb{P}^d(\mathbb{C})$, $\mathbb{P}^d(\mathbb{H})$ for $d \geq 2$ or to $\mathbb{P}^2(\mathbb{C})$. In these cases, the space I is a compact interval, and we may assume without loss of generality after a suitable linear transformation that $I = [0, \pi]$ holds.

Now let $(Y_n)_{n \in \mathbb{N}}$ be an isotropic random walk on some two-point homogeneous space X starting at time 0 at the point x_0. The isotropy condition means that the transition probabilities satisfy

$$P(Y_n \in A \mid Y_{n-1} = x) = P(Y_n \in g(A) \mid Y_{n-1} = g(x)) \quad (1.1)$$

for all $n \in \mathbb{N}$, $x \in X$, $g \in G$ and Borel sets $A \subset X$. It is now clear that the distributions of Y_n are H-invariant, and that they may be recovered from the distributions of the $[-1, 1]$-valued random variables $X_n := \cos D(Y_n, x_0)$ $(n \in \mathbb{N})$. Moreover, the sequence $(X_n)_{n \geq 0}$ forms a Markov chain.

For fixed two-point homogeneous spaces X, such associated Markov chains on $I \subset [0, \infty[$ and limit theorems for them were studied by many authors; see, for instance, Bingham, Diaconis, Voit, Zeuner, and references cited there. Moreover, in Voit we derived the following central limit theorem for Markov chains $(X_n)_{n \in \mathbb{N}}$ which were coming from isotropic random walks on d-spheres S^d for different dimensions d with $d \to \infty$.

Theorem 1.1. For each dimension $d \geq 2$, fix a jump distance $t(d) \in [0, \pi]$ and a number $l(d) \in \mathbb{N}$ of steps having the following properties:

1. $\lim_{d \to \infty} d^p \cdot t(d) = 0$ for some constant $p > 0$;
2. $\lim_{d \to \infty} [l(d)(1 - \cos t(d)) - 1/2 \cdot \ln d] = b$ exists for some constant $b \in \mathbb{R} \cup \{\infty\}$.

Now, for each dimension d, we consider the isotropic random walk $(Y_i^d)_{i \geq 0}$ on the d-sphere S^d starting at some fixed point $x_0^d \in S^d$ such that its transition probabilities are given by jumps of fixed size $t(d)$ at each step. We next define the $[-1, 1]$-valued random variables

$$X_i^d := \cos \angle (Y_i^d, x_0^d) = \cos D(Y_i^d, x_0^d) \quad (i \geq 0)$$