E-Methods for Fixed Point Equations $f(x)=x$

E. Kaucher and S. M. Rump, Karlsruhe

Received July 1, 1981; revised September 10, 1981

Abstract — Zusammenfassung

E-Methods for Fixed Point Equations $f(x)=x$. This paper provides newly implemented [11], [13] and widely applicable methods for computing inclusion (i.e. a containing interval) (Einschließung) of the solution of a fixed point equation $f(x)=x$ as well as automatic verification the existence (Existenz) and uniqueness (Eindeutigkeit) of the solution. These methods make essential use of a new computer arithmetic defined by semimorphisms as developed in [7] and [8]. We call such methods E-Methods in correspondence to the three German words. A priori estimations such as a bound for a Lipschitz constant etc. are not required by the new algorithm. So the algorithm including the a posteriori proof of existence and uniqueness of the fixed point is programmable on computers for linear as well as for nonlinear problems. This is a key feature of our results. The computations produced by E-methods deliver answers the components of which have accuracy better than 10^{-t+1} (where t denotes the mantissa length employed in the computer).

Key words: E-method, inclusion, automatic verification.

AMS Subject Classification: 65H99.

1. Introduction

In [5], [10] and [11] methods are introduced, which provide an inclusion (i.e. a containing interval) of the fixed point of an equation. The methods derived in [5] are typically generalizations of those introduced by Moore in [9]. The results presented here both generalize and simplify the methods given in [5], [9] and [10].

The following iteration operator introduced in [6]

$$K(X) := \bar{x} - R \ast g(\bar{x}) + \{E - R \ast g'(X)\} \ast (X - \bar{x})$$

(1)
is used in [9]. Here \(\bar{x} \in \mathbb{R}^n \), \(g : \mathbb{R}^n \to \mathbb{R}^n \in \mathcal{C}_X^1 \) and \(X \in \mathbb{R}^n \) denotes an \(n \)-dimensional interval vector and \(E \) the \(n \times n \) identity matrix. In [9] \(R \) is required to be a real non-singular matrix and \(\bar{x} \in X \). Under these conditions the existence of a solution of \(g(\bar{x}) = 0 \) in \(X \) is derived from the property \(K(X) \subseteq X \). We will show that it is not necessary to assume \(R \) to be non-singular and that \(\bar{x} \) can be chosen arbitrarily (not necessarily \(\bar{x} \in X \)). The somewhat more stringent condition \(K(X) \subseteq X \) (which is almost always satisfied on the computer) is sufficient to show that \(R \) is non-singular and that \(g(x) = 0 \) has exactly one solution \(\bar{x} \in X \).

2. Theoretical Preliminaries

Definition 1: Let \(M_1 \) and \(M_2 \) be closed subsets of the locally convex topological space \(\mathcal{M} \). We define the strict inclusion relation as follows

\[
M_1 \prec M_2 : \Leftrightarrow M_1 \subseteq M_2.
\]

i.e., \(M_1 \) lies in the interior of \(M_2 \).

An improved form of some fundamental results of [5] and [10] is given in the following theorem.

Theorem 2: Let \(f : Y \to \mathcal{M} \) be a continuous mapping and \(F : \mathcal{P}\mathcal{M} \to \mathcal{P}\mathcal{M} \) an arbitrary mapping of the power set \(\mathcal{P}\mathcal{M} \) into itself such that

\[
x \in Y \Rightarrow f(x) \in F(Y).
\]

Let \(Y \) be convex and compact. If

\[
F(Y) \subseteq Y,
\]

then there exists a fixed point \(\hat{x} \) of \(f \) with

\[
\hat{x} \in F(Y) \subseteq Y.
\]

Moreover

\[
\hat{x} \in \bigcap_{i=0}^{\infty} F^i(Y),
\]

and \(Q(f, Y) \subseteq Y \) for the set of fixed points

\[
Q(f, Y) := \{ x \in Y | f(x) = x \}
\]

of \(f \) in \(Y \). Therefore \(Q(f, Y) \cap \partial Y = \emptyset \).

Proof: From (3) and (4) it follows immediately that \(f \) maps the convex and compact subset \(Y \) of the locally convex space \(\mathcal{M} \) into itself. According to the fixed point theorem of Schauder-Tychonoff \(f \) has at least one fixed point \(\hat{x} \in Y \). With \(\hat{x} \in Y = F^0(Y) \) we have by induction

\[
\hat{x} \in F^k(Y) \Rightarrow \hat{x} = f(\hat{x}) \in F(F^k(Y)) = F^{k+1}(Y).
\]

The proof of (7) derives from (3) and (4) since for all \(x \in Q(f, Y) \subseteq Y \) we have

\[
x \in Y \Rightarrow x = f(x) \in F(Y) \subseteq Y.
\]