ON A RELATIONSHIP BETWEEN THE INTEGRABILITIES OF VARIOUS MAXIMAL FUNCTIONS

L. EPHREMIDZE

Abstract. It is shown that the right-sided, left-sided, and symmetric maximal functions of any measurable function can be integrable only simultaneously. The analogous statement is proved for the ergodic maximal functions.

Introduction. We deal with integrable functions on $T = [0, 2\pi)$ and assume that they are extended to 2π-periodic functions on the whole line \mathbb{R}. The class of such functions will be denoted by L. One can also consider the functions of L to be defined on the unit circle in the complex plane.

If a measurable set $E \subset \mathbb{R}$ is such that f is a 2π-periodic function and $f \in L$, then we assume that

$$
\int_E f \, d\nu = \int_{E \cap T} f \, d\nu
$$

(ν denotes the Lebesgue measure on the line).

We shall say that a subset $\Delta \subset \mathbb{R}$ is a segment of T if it is the preimage of an open arc of the unit circle by the exponential function. The set of such segments is denoted by \mathcal{E}. If $\Delta \in \mathcal{E}$, $\Delta \neq \mathbb{R}$ and (a, b) is a connected component of Δ, then we shall write $\Delta = (a, b)$, which should not cause any confusion. Obviously, in that case $|\Delta| = b - a$.

Let $x \in T$. We introduce the following notations of subsets of \mathcal{E}:

- $\mathcal{E}_0(x) = \{(a, b) \in \mathcal{E} : a < x < b\}$,
- $\mathcal{E}_1(x) = \{(a, b) \in \mathcal{E} : b = x\}$,
- $\mathcal{E}_2(x) = \{(a, b) \in \mathcal{E} : a = x\}$,
- $\mathcal{E}_3(x) = \{(a, b) \in \mathcal{E} : \frac{a + b}{2} = x\}$.

1991 Mathematics Subject Classification. 42B25, 28D05.

Key words and phrases. One-sided maximal functions, ergodic maximal function.
Consider the maximal operators M_j, $j = 0, 1, 2, 3$, defined by the equalities

$$M_j(f)(x) = \sup_{\Delta \in \mathcal{F}_j(x)} \frac{1}{|\Delta|} \left| \int_{\Delta} f dv \right|, \quad f \in L.$$

It is well known that $f \in L \Rightarrow M_j(f) \in L$, $j = 0, 1, 2, 3$, and if $f \geq 0$, then the inverse implication is true (see [1], [2]). But, in general, one cannot write explicitly the set of functions f for which $M_j(f)$ is integrable (in connection with this see [2], [3]). In this paper we shall show that for an arbitrary $f \in L$ the functions $M_j(f)$, $j = 0, 1, 2, 3$, can be integrable only simultaneously. An analogous statement is proved for the ergodic maximal functions in §2.

The author’s interest in this investigation was due to the question posed by Prof. L. Gogoladze (personal communication).

§ 1. Obviously, $M_0(f) \geq M_j(f)$, $j = 1, 2, 3$. We shall prove the following theorems.

Theorem 1. Let $f \in L$ and $M_1(f) \notin L$. Then $M_0(f) \notin L$.

Theorem 2. Let $f \in L$. Then

$$M_1(f) \notin L \Leftrightarrow M_2(f) \notin L.$$

Since $M_0(f) \leq M_1(f) + M_2(f)$, Theorems 1 and 2 enable us to conclude that the functions $M_j(f)$, $j = 1, 2, 3$, are nonintegrable whenever $M_0(f)$ is nonintegrable.

We begin by proving some lemmas. Their proofs are given in the form simplifying their extension to the ergodic case.

Let M be the operator

$$M(f)(x) = \sup_{a < x} \frac{1}{x - a} \int_a^x f dv, \quad f \in L.$$

Evidently, $\{x \in \mathbb{R} : M(f)(x) > t\} = (M(f) > t)$ is an open subset of \mathbb{R} for each t.

Lemma 1. Let $f \in L$, $t > 0$, and let (a, b) be a finite (i.e., $a \neq -\infty$, $b \neq \infty$) connected component of $(M(f) > t)$. Then we have

$$\frac{1}{x - a} \int_a^x f dv > t$$

for each $x \in (a, b)$.

This lemma was actually proved in [4] but we give it here for the sake of completeness.