Short Communications / Kurze Mitteilungen

A Remark About the Convergence of Interval Sequences

R. Krawczyk, Clausthal-Zellerfeld

Received April 29, 1983

Abstract — Zusammenfassung

A Remark on the Convergence of Interval Sequences. By some interval iterations the condition $\sigma(r) < 1$ will be assumed for the convergence of the corresponding interval sequence by which σ denotes the spectral radius of r, and r is a nonnegative Lipschitz matrix. In this paper the theorems are extended for the case $\sigma(r) = 1$.

AMS Subject Classifications: 65G10, 65H10, 65J15.

Key words: Systems of equations, interval operators, interval iterations.

Eine Bemerkung zur Konvergenz von Intervallfolgen. Bei manchen Intervalliterationen wird zur Konvergenz einer entsprechenden Intervallfolge vorausgesetzt, daß $\sigma(r) < 1$ ist, wobei σ den Spektralradius von r bezeichnet und r eine nichtnegative Lipschitzmatrix ist. In dieser Arbeit werden die Aussagen auf den Fall $\sigma(r) = 1$ erweitert.

1. Introduction

There are many papers dealing with interval sequences, which are defined with the help of interval operators. With regard to references we refer to the bibliography [1]. For the point-convergence of such an interval sequence to a solution x^* of an equation it will generally be assumed that a Lipschitz constant or (in case of a pseudometric Lipschitz condition) the spectral radius of a Lipschitz matrix is less than 1.

In the following paper it will be shown, that by applying the iteration method: $X_{k+1} := F(X_k)$ for one class of interval operators the usual existence test $F(X) \subseteq X$ is sufficient for the convergence of the sequence of midpoints \bar{x}_k to a solution x^* of the given equation.

For the class of interval-NEWTON-operators even the interval sequence $\{X_k\}$ itself converges to x^*.

If we apply the iteration method: $X_{k+1} := F(X_k) \cap X_k$, if additionally the spectral radius of the corresponding Lipschitz matrix is equal to 1 and if the Lipschitz matrix
is irreducible, then an analogous statement is true. Corresponding to the choice of the interval operator it holds \(\lim_{k \to \infty} \bar{x}_k = x^* \) resp. even \(\lim_{k \to \infty} X_k = x^* \).

With regard to notations we refer to section 2 of [2].

2. Problem

Let \(g \mid X_0 \in \mathbb{I} (\mathbb{R}^n) \to \mathbb{R}^n \) be a function, satisfying a Lipschitz condition

\[
g(x_1) - g(x_2) \leq L(x_1 - x_2) \quad \text{for all } x_1, x_2 \in X_0
\]

with \(L = [l, L] \in \mathbb{I} (\mathbb{R}^{n \times n}) \).

Under the assumption that

\[
T := \frac{1}{2} (J + \overline{I}) \in \mathbb{R}^{n \times n}
\]

is regular, it exists

\[
a := T^{-1}
\]

and

\[
r := \frac{1}{2} |a| |(I - J)|.
\]

\(r \) is a Lipschitz matrix of a pseudometric Lipschitz condition of the NEWTON-transformation

\[
f(x) := x - ag(x),
\]

because

\[
|f(x_1) - f(x_2)| \leq r |x_1 - x_2| \quad \text{for all } x_1, x_2 \in X_0
\]

holds.

It is known that \(x^* \in X_0 \) on account of (3) is a fixpoint if and only if \(x^* \) is a solution of the equation \(g(x) = 0 \).

For the inclusion of such a solution we can define interval sequences \(\{X_k\} \) with the help of several interval operators. At that we distinguish two classes of operators with different properties: \(K \)-operators and interval-NEWTON-operators. For the following we want to investigate the convergence behaviour of the interval sequences defined by the different operators for each one representative of these two classes.

3. The \(K \)-Operator

Let the interval function \(K \mid \mathbb{I} (X_0) \to \mathbb{I} (\mathbb{R}^n) \) with

\[
K(x) := \bar{x} - ag(\bar{x}) + [-r, r](X - \bar{x}), \quad \bar{x} := \frac{1}{2} (x + \bar{x})
\]

be continuous and inclusion isotone.

For the interval sequence \(\{X_k\} \) defined by

\[
X_{k+1} := K(X_k), \quad k = 0, 1, \ldots
\]

holds the following