The Lagrange function is a source for getting the so-called "dual bounds" for a wide class of mathematical programming problems of the form: find

\[f^* := \inf_{x \in X} f_0(x), \quad X \subseteq \mathbb{R}^n \] (1)

subject to the constraints

\[f_i(x) \leq 0, \quad i = 1, \ldots, m. \] (2)

Let \(u \) be a vector of Lagrange multipliers, and let

\[L(x, u) := f_0(x) + \sum_{i=1}^{m} u_i f_i(x) \] (3)

be the Lagrange function.

Consider the problem

\[\Psi(u) := \inf_{x \in X} L(x, u). \] (4)

For simplicity, let \(X \) be compact, and \(f_i, i = 0, \ldots, m \) be continuous functions. Then \(\Psi(u) \) is a concave function finitely determined for \(u \in \mathbb{R}^m \). For \(u \geq 0 \) and for any feasible point \(x \), we have \(L(x, u) \leq f_0(x) \) and \(\Psi(u) \) is a lower bound of \(f^* \). Let

\[\Psi^* := \sup_{u \geq 0} \Psi(u). \] (5)

It is clear that \(\Psi^* \leq f^* \). The value \(\Psi^* \) is called the "dual bound" for problem (1)-(2).

Let \(u = \bar{u} \) and the minimum in (4) be attained on the set \(M(\bar{u}) \). Then the supergradient set \(G_{\Psi}(\bar{u}) \) of \(\Psi \) at the point \(\bar{u} \) is defined as follows [1]:

\[G_{\Psi}(\bar{u}) = \text{co}\left\{ \{ f_i(x) \}_{i=1}^{m} : x \in M(\bar{u}) \right\}. \]

If \(M(\bar{u}) \) consists of a single point \(x(\bar{u}) \), then \(\Psi(u) \) is continuously differentiable at \(\bar{u} \) and its gradient is \(g_{\Psi}(\bar{u}) = \{ f_i(x(\bar{u})) \}_{i=1}^{m} \). In general, the determination of \(\Psi^* \) is a nondifferentiable optimization problem.

Problem (5) can be considered as a coordinating problem in the decomposition scheme with respect to constraints. We have constraints in two forms: (a) \(x \in X \), and (b) \(f_i(x) \leq 0, \quad i = 1, \ldots, m. \) Constraints of type (b) are accounted for in the
objective function with undefined Lagrange multipliers. We solve the “inner problem”, (4), for fixed \(\tilde{u} \) and find \(\Psi(u) \), some \(x(u) \in M(u) \), and the supergradient \(g_{\Psi}(u) = \{ f_i(x(u)) \}_{i=1}^m \). This information is sufficient for applying one of the nondifferentiable optimization methods for the solution of the coordinating problem (5) [2].

Let us consider a class of quadratic optimization problems of the following type: to find

\[
f^* := \inf_{x \in \mathbb{R}^n} K_0(x),
\]

subject to the constraints

\[
K_i(x) = 0, \quad i = 1, \ldots, m,
\]

where \(K_i(x) = (a_i x, x) + (b_i, x) + c_i, \ i = 0, 1, \ldots, m \). Let \(P^+ \) be a class of positive definite \(n \times n \) matrices and \(P^+ \) its closure. The Lagrange function for (6)-(7) equals

\[
L(x, u) = (A(u)x, x) + (b(u), x) + c(u),
\]

where \(A(u) = A_0 + \sum_i A_i u_i, \ b(u) = b_0 + \sum_i b_i u_i, \ c(U) = c_0 + \sum_i c_i u_i \). Let us set \(\Omega = \{ u \in \mathbb{R}^m: A(u) \in P^+ \} \) (accordingly \(\overline{\Omega} = \{ u \in \mathbb{R}^m: A(u) \in P^+ \} \)). If \(u \in \Omega \), then \(g'(u) = \min_x L(x, u) \) can be found by solving a linear system and we find:

\[
\Psi(u) = -\frac{1}{2} (A^{-1}(u) b(u), b(u)) + c(u).
\]

If in the formula \(\Psi^* = \max_{\Omega} \Psi(u) \) the maximum is attained on \(\Omega \), then \(\Psi^* = f^* \) and \(x(u^*) \) is an optimal solution of (6)-(7). Otherwise, the maximum (if any exists) is attained on the boundary: \(u^* \in \Omega \setminus \Omega \) and it is not defined uniquely. The function \(\Psi(u) \) is differentiable on \(\Omega \). Note that for almost all points \(\tilde{u} \in \overline{\Omega} \setminus \Omega \), we have \(\lim_{u \in \Omega, u \to \tilde{u}} \Psi(u) = -\infty \). This means that \(\Psi(u) \) is similar, by its properties, to barrier functions and allows one to use an unconstrained optimization technique for the evaluation of \(\Psi^* \).

Dual quadratic bounds can be used for getting the global extremum in polynomial programming problems [4,5], which consist of finding:

\[
\min P_0(z)
\]

subject to

\[
P_i(z) = 0, \quad i = 1, \ldots, m,
\]

where \(P_i(z), i = 0, \ldots, m \) are polynomials of \(z_1, \ldots, z_n \). By introducing new variables and making use of quadratic substitutions of the form \(z_i^2 = y_i, \ z_{jk} = z_j z_k \), and so forth, we can reduce the polynomials in (8) to quadratic functions of the extended variable set. Hence, any problem of type (8) can be reduced to a quadratic optimization problem. We can apply the dual-bounds approach to solve this problem. It would be interesting to find classes of polynomial problems for which the quadratic dual bound \(\Psi^* = f^* \). This question was investigated for a problem of finding an unconstrained global minimum of a polynomial function.