STRUCTURAL CENTRALITY IN
COMMUNICATIONS NETWORKS

KENNETH D. MACKENZIE
Carnegie Institute of Technology

This paper examines the concept of centrality with respect to small-group communication experiments. An index of centrality is presented which is based on the incidence matrix of actual communications rather than on the deviation matrix of possible communications, as in the Bavelas Index of Centrality. The index takes the value of zero for the homogeneous all-channel graph and the value of unity for the homogeneous wheel graph. The index can be computed for individuals as well as groups. Three examples are computed.

Small-group communications network experiments use graphs like the wheel, circle, star, chain, and all-channel to represent the flow of messages or interactions. This paper examines the concept of structural centrality and presents a new measure based on the actual number of messages sent to the participants. A communications network is considered structurally centralized to the degree that the network approaches that of a wheel network and decentralized to the degree that the graph is that of an all-channel.

The network or graph G consists of n-participants G_1, G_2, \ldots, G_n and the communication arcs or channels between the participants. Writers like Bavelas [1, 2], Leavitt [7], Flament [5] associate with every communications network a matrix of ones and zeros. Such a matrix is called a sociomatrix. Unity is placed in the ijth entry if it is possible for G_i to send a communication to G_j; the ijth element is zero if this interaction is not possible. This particular matrix formulation has two basic weaknesses.

(i) Often some of the possible channels are not used.
(ii) Those channels that are used are not always used in the same amount.

A sociomatrix of a small group is not an accurate representation of the actual communication pattern unless all possible channels are used equally. The participants may chose not to use all of the possible communication channels

*This research was supported in part by Ford Foundation Grant 140055 to the Graduate School of Industrial Administration at Carnegie Institute of Technology for Research in Organizational Behavior.

†Graduate School of Industrial Administration of Carnegie Institute of Technology. The author wishes to acknowledge the helpful comments and criticisms of R. L. Swinth in the preparation of this manuscript.
or they may use them unequally. For example, G_i may send seven messages to G_j, only two to G_k, and none to G_m.

A more realistic approach is to construct incidence matrices. (The definition given in this paper differs from that of Ford and Fulkerson [6] or Berge [3] where an incidence matrix is defined as a matrix $S = [s_{ij}]$ where s_{ij} is 1 if the arc is from G_i to G_j, -1 of from G_i to G_j, and 0 if there is no arc between G_i and G_j). An incidence matrix $Q = (q_{ij})$ is a (square, hollow, Frobenius) matrix whose elements are defined by

\[
q_{ij} = \begin{cases}
\frac{\text{number of communications sent by } G_i \text{ to } G_j}{\text{total number of messages sent by } G}, & \text{for } i \neq j, \\
0, & \text{if } i = j.
\end{cases}
\]

The definition of Q implies that the sum of the q_{ij} is unity. In general, $q_{ij} \neq q_{ii}$. This definition of $Q = [q_{ij}]$ gives dimensionless entries (by virtue of being dimensionless, incidence matrices of groups of the same number of participants but sending different numbers of messages can be compared) that vary in size with the intensity of communications between the $n(n - 1)$ possible arcs. The two major weaknesses of the sociomatrix are not present in the incidence matrix.

One possible weakness of the incidence matrix is that it may be harder to conceptualize the structure of the network. For instance from the sociomatrix it is possible to construct a deviation matrix $D = [d_{ij}]$, where the ijth entry is the minimum number of arcs on a path from G_i to G_j. When the arcs are characterized by q_{ij} rather than 1's and 0's, the interpretation of the structure appears more complicated. (The deviation matrix can be used, by itself, to construct the main topological features of the network G. But in terms of describing communication patterns, it does not seem useful except in the case where all the possible channels are used equally and messages are relayed without restatement and/or interpretation). However this possible weakness would appear to be more than compensated by the ability to specify a more detailed (and realistic) measure of centrality.

In the traditional approach, the concept of a deviation matrix, leads directly to the Bavelas Index of Centrality [1]. The latter is defined on the deviation matrix $D = [d_{ij}]$ by summing the rows to get

\[
d_i = \sum_{j=1}^{n} d_{ij}
\]

and summing the d_i to get D. The index of centrality is given by

\[
\sum_{i=1}^{n} \frac{D}{d_i}.
\]

This measure is not very sensitive to large shifts in the sociomatrix. For example, the centrality index of a wheel is 26.3 and 25.0 for the circle and all-channel.