SYNTHESIS OF N-METHYLMORPHOLINIUM 6-METHYL-4-(2-THIENYL)-5-PHENYLCARBAMOYL-3-CYANO-1,4-DIHYDROPYRIDINE-2-THIOLATE AND ITS REACTION WITH VARIOUS FUNCTIONALLY SUBSTITUTED METHYL HALIDES

V. D. Dyachenko, S. G. Krivokolysko, and V. P. Litvinov

Condensation of the anilide of acetoacetic acid, thiophene aldehyde, cyanothioacetamide and N-methylmorpholine gave N-methylmorpholinium 6-methyl-4-(2-thienyl)-5-phenylcarbamoyl-3-cyano-1,4-dihydropyridine-2-thiolate which reacted with various halides ZCH_2Hal or $\text{H}_2\text{NCOCH(Ph)}\text{Cl}$ to give substituted 2-ZCH_2thio or 2-$\text{H}_2\text{NCOCH(Ph)}$thio-1,4-dihydropyridines.

Thienyl substituted 1,4-dihydropyridines are known to be pharmacologically active [1]. With the objective of preparing new biologically active compounds of this series we have developed a method for the synthesis of N-methylmorpholinium 6-methyl-4-(2-thienyl)-5-phenylcarbamoyl-3-cyano-1,4-dihydropyridine-2-thiolate (I) which involves a three component condensation of the anilide of acetoacetic acid (II), thiophene aldehyde (III) and cyanothioacetamide (IV) in ethanol at 20°C in the presence of N-methylmorpholine. When cyanoselenoacetamide (V) was used in place of compound IV the product was the selenone (VI) rather than the selenolate.

Reaction of salt (I) with the halides ZCH_2Hal (VIIa-t) and $\text{H}_2\text{NCOCH(Ph)}\text{Cl}$ (VIII) gave the corresponding 2-thio-1,4-dihydropyridines substituted at the sulfur atom (IXa-t and X). The 4,7-dihydrothieno[2,3-b]pyridines (XIa and b) were prepared from compounds IXa and b under the conditions of the Thorpe—Ziegler synthesis.

Treatment of salt I with dilute hydrochloric acid converted it to the thione (XII) which reacted with 3-bromoacetylcoumarin (VIIu) and 1-iodohexane (VIIv) in basic media to give the corresponding sulfides (XIIIa and b).

![Chemical Structures](image.png)
The spectroscopic characteristics of compounds I, VI, IXa-t, X, XIa and b, XII and XIIIa and b confirmed their structures (see Table 1 and Experimental section). The IR spectra contain bands corresponding to a conjugated CN group at 2190-2220 and an NH group in the 3200-3350 cm⁻¹ region. The H NMR spectra contain singlets of the hydrogens of the dihydropyridine ring at 5.05-5.20 (CH) and 9.23-9.70 ppm (NH) as well as signals of hydrogen atoms of the substituents.

EXPERIMENTAL

IR spectra of Nujol mulls were recorded with an IRS-29 spectrometer, and ¹H NMR spectra of DMSO-D₆ solutions with TMS as internal standard were recorded with a Bruker WP-100 SY (10 MHz) instrument.

Characteristics of the compounds synthesized are presented in Table 2.

N-Methylmorpholinium 6-Methyl-4-(2-thienyl)-5-phenylcarbamoyl-3-cyano-1,4-dihydropyridine-2-thiolate (I). A mixture of anilide II (1.77 g, 10 mmol), aldehyde III (1.12 g, 10 mmol), cyanothioacetamide IV (1.00 g, 10 mmol) and N-methylmorpholine (1.51 g, 15 mmol) in ethanol (20 cm³) was stirred at 20°C for 6 h. The precipitate of compound I was filtered off and washed with ethanol and acetone. Yield 3.54 g (78%). mp 142-144°C. IR spectrum: 3255 (NH), 2190 (CN), 1650 cm⁻¹ (CONH). ¹H NMR spectrum: 9.24 (1 H, s, CONH), 8.09 (1 H, br. s., NH), 6.70-7.58 (8 H, m, Harom), 4.89 (1 H, s, 4-H), 3.76 (4 H, m, CH₂OCH₂), 3.09 (4 H, m, CH₂NCH₂), 2.72 (3 H, s, NCH₃), 2.07 ppm (3 H, s, 6-CH₃). Found, %: C 60.88, H 5.59, N 12.41, S 14.24. C₁₈H₁₅N₃O₃S₂. Calculated, %: C 60.77, H 5.76, N 12.32, S 14.11.

6-Methyl-4-(2-thienyl)-5-phenylcarbamoyl-3-cyano-1,4-dihydropyridine-2-selenone (IV). A suspension of anilide 17 (1.77 g, 10 mmol), aldehyde III (1.12 g, 10 mmol), cyanoacetamide V (1.47 g, 10 mmol) and N-methylmorpholine (1.51 g, 15 mmol) in absolute ethanol (20 cm³) was stirred for 6 h at 20°C in an atmosphere of argon after which the pH was adjusted to 3 by addition of 10% aqueous hydrochloric acid. The precipitate was filtered off and washed with ethanol and hexane to give VI (2.83 g, 71%). mp 142-144°C. IR spectrum: 3210 (NH), 2220 (CN), 1650 cm⁻¹ (CONH). ¹H NMR spectrum: 10.63 (1 H, s, CONH), 7.00-7.85 (8 H, m, Harom), 2.60 ppm (3 H, s, CH₃). Found, %: C 54.11, H 3.08, N 10.64, S 8.16. C₁₈H₁₃N₃O₂S₂. Calculated, %: C 54.27, H 3.29, N 10.55, S 8.05.