Algorithm 19

Step-Cycle Generation

By

S. Mossige, Bergen

Received October 7, 1973

Abstract — Zusammenfassung

Algorithm 19. Step-Cycle Generation. For given integer \(m > 1 \), each step-cycle corresponds to a set of permutations such that the step-cycles constitute a set of equivalence classes on the set of all permutations on \(m \) elements.

The algorithm has been used in connection with computations to search for groups consisting of a union of disjoint sets of permutations such that each set of permutations corresponds to a step-cycle, see [2] and [8].

Let \(m = n - 1 \) and \(n \geq 2 \) be an integer and \(P = (i_1) \), \(i = 1, 2, \ldots, n-1 \) a permutation on the set \(S = \{1, 2, \ldots, n-1\} \). The factorial representation of \(s, 0 \leq s < m! \) is

\[
s = (t[1] - 1)(m - 1)! + (t[2] - 1)(m - 2)! + \ldots + (t[m - 1] - 1) \cdot 1!
\]

where \(1 \leq t[i] \leq m + 1 - i, \ i = 1, 2, \ldots, m - 1 \), see [1].

In [7], see also [5] and [6], Pager defines an \(m \)-ary \(p \)-number as the sequence \(t[1] \ldots t[m] \) where \(t[m] = 1 \). When the permutations are ordered lexicographically there is a one-to-one correspondence between the permutation \(P \) and the \(p \)-number \(T(P) = t[1] \ldots t[m] \) such that the ordering number \(N(P) \), where \(1 \leq N(P) \leq m! \) corresponds to \(T(P) \). For \(P = (i) \) then \(N(P) = 1 \) and \(T(P) = 11 \ldots 1 \). The complementary permutation to \(P \) is \(\bar{P} = (a_{n-1}) \). In my paper [3] it was proved that the sum of the ordering numbers of two complementary permutations is \(N(P) + N(\bar{P}) = (n - 1)! + 1 \).
A step-cycle $D = (d_1 d_2 \ldots d_n) = (d_i)$ is a cycle of n positive integers, $0 < d_i < n$, which satisfy the following conditions:

(i) $\sum_{i=1}^{n} d_i \equiv 0 \pmod{n}$

(ii) By “accumulation” from one arbitrary starting point, all the residue classes modulo n are represented once each (Selmer [8]).

Because of (i), property (ii) then holds for all n starting points. The $n-1$ first residue classes by each accumulation represent a permutation of the residue classes $1, 2, \ldots, n-1$, that is, a permutation on S. A step-cycle D gives rise to a set \mathbb{D} of different permutations. These sets of permutations on S form a set of equivalence classes on the set of all permutations on S.

The permutation P is said to generate the step-cycles D and $\bar{D} = (n-d_i)$ if $N(P) = \min \{N(P_i); P_i \in D \text{ or } P_i \in \bar{D}\}$. Hence, the algorithm gives the step-cycles in complementary pairs ordered lexicographically after their generating permutations. It can be proved that $D = \bar{D}$ (as cycles) if and only if n is even and $d_i = n - d_{n+1-i}$, see [4]. Another important observation is that for $P \in \mathbb{D}$ then $P \in \bar{\mathbb{D}}$.

The table lists all step-cycles for $3 \leq n \leq 6$ as n-digit numbers.

<table>
<thead>
<tr>
<th>$n=3$</th>
<th>$n=4$</th>
<th>$n=5$</th>
<th>$n=6$</th>
</tr>
</thead>
<tbody>
<tr>
<td>111</td>
<td>1111</td>
<td>11111</td>
<td>111111</td>
</tr>
<tr>
<td>222</td>
<td>3333</td>
<td>44444</td>
<td>555555</td>
</tr>
<tr>
<td>2123</td>
<td>21124</td>
<td>211125</td>
<td>211112</td>
</tr>
<tr>
<td>24342</td>
<td>22222</td>
<td>455541</td>
<td>355542</td>
</tr>
<tr>
<td>211341</td>
<td>212232</td>
<td>555313</td>
<td>455325</td>
</tr>
<tr>
<td>454314</td>
<td>212232</td>
<td>553113</td>
<td>544122</td>
</tr>
<tr>
<td>453412</td>
<td>213523</td>
<td>553153</td>
<td>313434</td>
</tr>
<tr>
<td>253143</td>
<td>413523</td>
<td>535353</td>
<td>311214</td>
</tr>
<tr>
<td>522144</td>
<td>144144</td>
<td>522522</td>
<td>443223</td>
</tr>
</tbody>
</table>

begin integer i, j, c, n, m;
integer array $a[1:10], b[1:10], d[1:11], e[1:11], g[1:10], t[1:10]$;
boolean first;
procedure perm(b, m);
integer array b; integer m;
begin integer i, j;
if first EQIV false then go to r3;
for $i := 1$ step 1 until m do $t[i] := 1$;
first := false;
g[1]:=(m+1)//2; g[2]:=(m-1)//2;