MORE ON EM FOR ML FACTOR ANALYSIS

DONALD B. RUBIN
UNIVERSITY OF CHICAGO

DOROTHY T. THAYER
EDUCATIONAL TESTING SERVICE

We address several issues that are raised by Bentler and Tanaka's [1983] discussion of Rubin and Thayer [1982]. Our conclusions are: standard methods do not completely monitor the possible existence of multiple local maxima; summarizing inferential precision by the standard output based on second derivatives of the log likelihood at a maximum can be inappropriate, even if there exists a unique local maximum; EM and LISREL can be viewed as complementary, albeit not entirely adequate, tools for factor analysis.

Key words: EM, LISREL, maximum likelihood, factor analysis, algorithms, precision of estimation.

We feel that Bentler and Tanaka's [1983] discussion of Rubin and Thayer [1982] raises three important questions:

(i) Is there only one local maximum to the likelihood for the Jöreskog [1969] model and data?

(ii) Assuming there is only one local maximum, is it appropriate to use standard output based on second derivatives of the log likelihood to measure inferential precision?

(iii) Is EM a good algorithm to use for ML factor analysis?

We address these questions in order.

Is Jöreskog’s Original Solution the Only Local Maximum and How Do We Know?

Label the parameter estimates in the three Rubin and Thayer solutions as \(\theta_1, \theta_2, \) and \(\theta_3 \), where \(\theta_3 \) is the original Jöreskog solution. These values were obtained by using three different starting values and letting EM run through 50 iterations. We stopped at 50 iterations because the 1975 version of Jöreskog’s program then available to us (ACOVSF) also converged to \(\theta_1, \theta_2, \) and \(\theta_3 \), as we mentioned in our article on page 74, and thus EM and this other algorithm were in agreement.

Now let \(\theta_1, \theta_2, \) and \(\theta_3 \) represent the same solutions except rotated to have a zero factor loading to agree with the Bentler and Tanaka restriction. Using highly accurate computations of first and second derivatives at the solutions, or employing EM with very strict convergence criteria, it evidently can be shown that, although \(\theta_1, \theta_2, \) and \(\theta_3 \) are all points where the tangent plane to the likelihood is nearly horizontal, neither \(\theta_1 \) nor \(\theta_2 \) is a true local maximum. Our reporting of \(\theta_1 \) and \(\theta_2 \) as local maxima cannot be blamed on either EM or Jöreskog’s original program, but rather our willingness to accept convergence criteria used in ASCOVF.

This work was partially supported by the Program Statistics Research Project at Educational Testing Service.

Reprint requests should be addressed to Donald B. Rubin, Department of Statistics, University of Chicago, 5734 University Avenue, Chicago, IL. 60637.
In any case, is θ_3 the only local maximum? Bentler and Tanaka believe so. If θ_3 is the only local maximum, then there exists a monotonically increasing path from every θ in the parameter space to θ_3, in particular from θ_1 to θ_3 and from θ_2 to θ_3. The fact that programs like LISREL-V and EQS move from starting points θ_1 and θ_2 to θ_3 provides no direct evidence that there exists a monotone increasing path from θ_1 to θ_3 or from θ_2 to θ_3, since these algorithms can jump valleys in the likelihood. In contrast, EM moves only along monotone increasing paths in problems like this where the expectation of the complete-data log likelihood is convex. Consequently, Schoenberg's experiment with EM reported in Bentler and Tanaka's Footnote 3 shows that there exists an increasing path from θ_2 to θ_3 since EM moves from θ_2 to θ_3. Judging from the one slightly positive eigenvalue in the second derivative matrix at θ_2, apparently this path begins as a one-dimensional nearly horizontal ridge in the 35-dimensional parameter space.

Does there exist a similar monotone path from θ_1 to θ_3? If such a path cannot be found, this suggests that there may in fact be another local maximum besides θ_3. Schoenberg's experiment using EM finds a monotonely increasing path from θ_1 to another nearly horizontal place in the likelihood (with value .0170) but not to θ_3. Thus, we do not yet know whether θ_3 is the only local maximum.

Bentler and Tanaka claim that multiple local maxima in ML factor analyses are rare. But how do they know? It is difficult to examine 35-dimensional space, and maximization algorithms like LISREL-V and EQS are not designed to investigate the question of multiple local maxima. We are not aware of any real evidence addressing the frequency of multiple local maxima in ML factor analyses with actual data.

Is There A Simple Measure of Inferential Precision with These Data?

Now suppose that there is only one local maximum for this problem, the original Jöreskog solution, θ_3. Even then, the existence of points θ_1 and θ_2 where the likelihood is nearly horizontal can be exceedingly important inferentially, because they indicate that the likelihood function may not be well approximated by a normal distribution (i.e., the log-likelihood may not be essentially quadratic). In such cases, the MLE may not be a good estimate because of asymmetries in the likelihood function, and even when the MLE is a good estimate, standard statistical inferential procedures can be misleading since they rely on the approximate normality of the likelihood function. In contrast to our position, Bentler and Tanaka seem to believe that the existence of a unique local maximum is all that is needed to insure the optimality of the MLE as an estimate and the relevance of the second derivative matrix of the log-likelihood evaluated at the MLE as a measure of inferential precision.

To see that the existence of the solutions reported in our paper can matter, suppose we wish to compare the fit obtained at θ_2 with the fit obtained at the Jöreskog solution, θ_3. Let C be the variance-covariance matrix based on the second derivatives at θ_3 printed out by LISREL-V. Since $\{(\theta_2 - \theta_3)C^{-1}(\theta_2 - \theta_3)^T\}^{1/2} = 4.7$, the conclusion based on this LISREL-V output is that θ_2 is nearly five standard errors from θ_3, implying that θ_2 is entirely implausible, i.e., that θ_2 provides a dramatically worse fit to the data than does θ_3. Of course, there is another standard way to compare the fits provided by θ_2 and θ_3, and that is by comparing the values of the likelihood function at θ_2 and θ_3. The standard χ^2 statistic is $-2 \ln$ (likelihood ratio). The value of the likelihood ratio of θ_2 to θ_3 is given by

$$\exp\left[-\frac{n}{2} \{f(\theta_3) - f(\theta_2)\} \right] = .1143$$

where $f(\theta)$ is the function given in Rubin and Thayer's Table 3, and $n = 710$. In contrast