A Construction of Complete Minimal, But Not Uniformly Minimal, Exponential Systems with Real Separable Spectrum in \(L^p \) and \(C \)

A. M. Sedletskii

ABSTRACT. We construct real separable sequences \(\{\lambda_n\} \) such that the corresponding systems of exponentials \(\exp(i\lambda_n t) \) are complete and minimal, but not uniformly minimal, in the spaces \(L^p(-\pi, \pi) \), \(1 \leq p < \infty \), or \(C[-\pi, \pi] \).

§1. In the analysis of approximate properties of exponential systems

\[
\exp(i\lambda_n t), \quad \lambda_n \in \Lambda, \tag{1}
\]
on a finite interval (say, \([-\pi, \pi]\)), the researchers' attention, starting from [1], is chiefly attracted to such questions as completeness and minimality of systems (1) in \(L^p = L^p(-\pi, \pi), \ 1 \leq p < \infty \), and \(C = C[-\pi, \pi] \), unconditional bases of the form (1) in \(L^2 \), and equiconvergence with the trigonometric Fourier series of nonharmonic Fourier series with respect to system (1) in the interval \((-\pi, \pi)\). Uniform minimality of systems (1) in \(L^p \) and \(C \) is much less studied.

A sequence \(\{e_i\} \) of elements of a Banach space is said to be minimal if

\[d_i \overset{df}{=} \text{dist}(e_i, \text{span}(e_k, \ k \neq i)) > 0, \]

for each \(i \); it is said to be uniformly minimal if \(d_i \geq \delta \|e_i\| \) for all \(i \), where \(\delta > 0 \) is independent of \(i \).

The latter property is of interest for several reasons. First, it is a necessary condition for the system \(\{(e_i)\} \) to be a basis. Next, Il'in [3] proved an important theorem, which can be stated as follows for systems (1) in the spaces \(L^p \). Let all \(\lambda_n \) lie in the horizontal strip \(|\text{Im } z| \leq H < \infty \), and let the number of these points in the rectangle \(t < \text{Re } z < t + 1, |\text{Im } z| \leq H \) be uniformly bounded with respect to \(t \in \mathbb{R} \). Next, let the system (1) be complete and minimal in \(L^p \), \(1 \leq p < \infty \). Then the system (1) is uniformly minimal if and only if the nonharmonic Fourier series with respect to the system (1) of any \(f \in L^p \) is uniformly equiconvergent in \((-\pi, \pi)\) with the trigonometric Fourier series of \(f \).

We see that uniform minimality of exponential systems in \(L^p \) is a property of interest per se.

Suppose that all \(\lambda_n \) are real. Then \(\lambda_n - \lambda_m \to 0 \) obviously implies \(\|\exp(i\lambda_n t) - \exp(i\lambda_m t)\|_p \to 0 \). Hence the separability condition \(|\lambda_n - \lambda_m| \geq \delta > 0 \) is necessary for system (1) to be minimal in \(L^p \) and \(C \). We pose the following question: Do there exist complete minimal, but not uniformly minimal, systems of exponentials in \(L^p \) and \(C \) with real separable spectrum \(\Lambda = (\lambda_n) \)? In the present paper we show that the answer is "yes" by explicitly constructing such sequences.

Let us introduce some notation. Consider a real sequence

\[M(\mu_n) \overset{\infty}{\leftarrow}, \quad \cdots < \mu_{-n} < \cdots < \mu_{-1} < \mu_0 \leq 0 < \mu_1 < \cdots < \mu_n < \cdots. \]

We write \(M_s = (\mu_n) \), \(-s \leq n \leq s \), \(s \in \mathbb{N} \). Thus, \(M_s \) is a finite symmetric collection of \(\mu_n \). By \(M_s + h \) we denote the translation of \(M_s \) by \(h \), that is, \(M_s + h = (\mu_n + h) \), \(-s \leq n \leq s \).

The main goal of this paper is to prove the following three theorems.
Theorem 1. Let $0 \leq \alpha_n \leq d$, $d < 1/4$, $n \in \mathbb{N}$, and
\[
\sum_{n=1}^{\infty} \frac{\alpha_n}{n} = +\infty.
\] (2)

Let U be the sequence of all positive integers in the intervals $[2^s - s, 2^s + s]$, $s \geq 3$. Set
\[
\mu_n = n \text{ for } n \leq 0 \quad \text{and} \quad \mu_n = n - \alpha_n \text{ for } n > 0.
\] (3)

Then for
\[
\Lambda = \left(\mu_n : n \in \mathbb{Z} \setminus U \setminus \{0\} \right) \cup \left(\bigcup_{s=3}^{\infty} (M_s + 2^s) \right),
\] (4)
the system (1) is complete and minimal, but not uniformly minimal, in L^1.

Theorem 2. Let α_n and U be the same as in Theorem 1 except that $d < 1/8$. Let
\[
\mu_0 = 0, \quad \mu_n = n + \frac{1}{2} \quad \text{for } n < 0, \quad \text{and} \quad \mu_n = n - \frac{1}{2} - \alpha_n \text{ for } n > 0.
\] (5)

Then for Λ given by Eq. (4), the system (1) is complete and minimal, but not uniformly minimal, in C.

In the following $[z]$ stands for the greatest integer in z.

Theorem 3. Let $1 < p < \infty$, $1/p + 1/q = 1$. Let V be the sequence of all integers in the intervals
\[
I_s = [2^s, 2^s + \lfloor \log s \rfloor], \quad s \geq 3.
\] (6)

Let
\[
\Lambda = (n : n < 0, n \in V) \cup (n - \frac{1}{q} : n \in \mathbb{N} \setminus V).
\]

Then the system (1) is complete and minimal, but not uniformly minimal, in L^p.

Note that the sequences Λ occurring in Theorems 1–3 are real and separable.

§2. Lemmas. In the following statements, $L^\infty(-\pi, \pi)$ is understood to mean $C[-\pi, \pi]$.

Lemma 1. Suppose that the system
\[
\exp(i \mu_n t), \quad \mu_n \in M \subset \mathbb{R},
\] (7)
is not minimal in L^p, $1 \leq p \leq \infty$. If Λ contains a subsequence of translations
\[
M_s + h_s, \quad s = s_j \to \infty, \quad h_s \in \mathbb{R},
\] then the system (1) is not uniformly minimal in L^p.

Proof. Since system (7) is not minimal in L^p, there exists a point $\mu = \mu_k \in M$ such that
\[
\text{dist}(\exp(i \mu t), \text{span}(\exp(i \mu_n t), \mu_n \in M, n \neq k)) = 0.
\]

It follows that the sequence
\[
\rho_s = \text{dist}(\exp(i \mu t), \text{span}(\exp(i \mu_n t), \mu_n \in M_s, n \neq k))
\]
satisfies
\[
\rho_s \to 0, \quad s \to \infty.
\] (8)

Set
\[
\rho_s(h) = \text{dist}(\exp(i(\mu + h)t), \text{span}(\exp(i \gamma_n t), \gamma_n \in M_s + h, \gamma_n \neq \mu + h)).
\]

Obviously,
\[
\rho_s(h) = \rho_s
\] (9)
for each $h \in \mathbb{R}$.

Let s be so large that $\mu \in M_s$. Since Λ contains the translation $M_s + h_s$, it follows that the distance from the function $\exp(i(\mu + h_s)t)$, which belongs to system (1), to the closure of the linear span of the other functions in this system does not exceed $\rho_s(h_s)$. However, by (9) and (8) we have $\rho_s(h_s) \to 0$ as $s = s_j \to \infty$. Thus, the cited distance tends to zero as $s = s_j \to \infty$. This means exactly that system (1) is not uniformly minimal in L^p. \qed

1085