Coedge Regular Graphs without 3-Stars

V. V. Kabanov and A. A. Makhnev

ABSTRACT. We describe coedge regular graphs such that antineighborhoods of their vertices are coedge regular graphs with the same value of the parameter μ. As a consequence of the main theorem, we obtain a classification of coedge regular graphs without 3-stars.

KEY WORDS: coedge regular graph, extensions by complete graphs, antineighborhood, graphs without 3-stars.

We consider nonoriented graphs without loops and multiple edges. For a vertex a of a graph Γ, by $[a]$, respectively $[a]^\prime$, we denote the subgraph induced by Γ on the set of all vertices adjacent to a, respectively of all vertices that are not adjacent to a (and that differ from a). This subgraph is called the neighborhood, respectively the antineighborhood, of the vertex a.

A graph Γ is said to be a regular graph of valency k if for each vertex a of Γ, the neighborhood $[a]$ consists of exactly k vertices. Further, Γ is called a coedge regular graph with parameters (v, k, μ) if Γ is a regular k-valent graph with v vertices and for each couple a, b of nonadjacent vertices there are exactly μ vertices adjacent both to a and b, i.e., $|[a] \cap [b]| = \mu$.

In this paper we classify coedge regular graphs such that antineighborhoods of their vertices are coedge regular graphs with the same value of the parameter μ.

By (m, n) denote the complete bichromatic graph with monochromatic parts of order m and n. The graph $(m, 1)$ is called an m-star whenever $m \geq 2$. We prove below (see Lemma 1) that the class of graphs that we consider is contained in the extensive class of graphs without 3-stars. Further, the main theorem of the paper leads to a classification of coedge regular graphs without 3-stars.

A graph on $X \times Y$ is called an $m \times n$-graph if $|X| = m$, $|Y| = n$, and the vertices (x_1, y_1) and (x_2, y_2) are adjacent if and only if either $x_1 = x_2$ or $y_1 = y_2$. An $m \times n$ graph is also called a rectangular lattice. Such a graph with $m = n$ is called a lattice graph and is denoted by $L_2(m)$. Further, a triangle graph $T(m)$ is a graph whose vertices are unordered couples of elements of X, $|X| = m$, and the couples $\{a, b\}$ and $\{c, d\}$ are connected by an edge if and only if they have a common element. A coedge regular graph with parameters (v, k, μ) is said to be a strictly regular graph with parameters (v, k, λ, μ) if for each couple of adjacent vertices a, b there are exactly λ vertices adjacent both to a and b, i.e., $|[a] \cap b]\| = \lambda$. Let A, B, and C be three sets. Let us say that B and C split A if $A \subseteq B \cup C$ and $B \cap C$ contains no elements of A. In what follows, a subgraph of Γ means an induced subgraph. Finally, the α-extension of Γ is the graph obtained by replacing each vertex $a \in \Gamma$ by an α-clique (a) (an α-clique is the complete graph on α vertices); vertices of (a) and (b) are adjacent if and only if a and b are adjacent in Γ.

Theorem. Let Γ be a coedge regular graph such that the antineighborhoods of all its vertices are coedge regular graphs with the same value of the parameter μ. Then Γ is an α-extension ($\alpha \geq 1$) of one of the following graphs:

1. a completely disjoint graph with m vertices ($m \neq 2$);
2. an $m \times n$ rectangular lattice ($m \geq 3$, $n \geq 3$) or a triangle graph $T(m)$ ($m \geq 6$);
3. the Schlafli graph (the strictly regular graph with parameters $(27, 16, 10, 8)$ that is the complementary graph of the point graph of the generalized quadrilateral $GQ(2, 4)$).

Corollary. A coedge regular graph without 3-stars is either the complementary graph of a regular graph without triangles or one of the graphs described in the theorem.

Translated from Matematicheskie Zametki, Vol. 60, No. 4, pp. 495–503, October, 1996.
Original article submitted August 19, 1994.
Proof. Let Γ be a coedge regular graph that is not a complementary graph to a regular graph without triangles. Then for each vertex $a \in \Gamma$ there are nonadjacent vertices in $[a]'$ and for each couple b, c of nonadjacent vertices in $[a]'$ the inclusion $[b] \cap [c] \subset [a]$ holds. In fact, otherwise there would be a vertex d in $[a] \cap [b] \cap [c]$ and a subgraph on the set $\{a, b, c, d\}$ that is a 3-star in Γ. This contradicts the assumption.

Proof of the theorem. Let Γ be a coedge regular graph that is a counterexample for the theorem and has the smallest possible number of vertices. If Γ does not contain nonadjacent vertices, then Γ is a complete graph and the value of μ is not defined, but in this case the antineighborhood of each vertex is the empty graph. If Γ contains nonadjacent vertices and $\mu = 0$, then Γ is a union of m complete subgraphs, $m \geq 2$. In this case the antineighborhood of a vertex is a union of $m - 1$ complete subgraphs and $m - 1 \geq 2$. Thus, Γ is a coedge regular graph with parameters (v, k, μ) and $\mu > 0$. If $\mu = k$, then the antineighborhood of a vertex is a coclique. So $\mu = 0$ and Γ is a completely disjoint graph. Consequently, $0 < \mu < k$.

Lemma 1. If a, b are adjacent vertices of Γ, then $[a] \cap [b]'$ and $[a]' \cap [b]$ are cliques. Moreover, Γ contains no 3-stars.

Proof. Let c and d be nonadjacent vertices of $[a] \cap [b]'$. By assumption, $[c] \cap [d] \subset [a]'$. However, this contradicts the fact that $[c] \cap [d]$ contains the vertex $a \in [b]$.

Let $\Delta = \{a, b, c, d\}$ be a 3-star in Γ and a be a three-valent vertex of Δ. Then $[a] \cap [b]'$ contains nonadjacent vertices c and d. This contradicts the previous statement.

Lemma 2. Let a and b be nonadjacent vertices of Γ.

1. If $c \in [a]' \cap [b]'$, then $[c]$ does not intersect $[a] \cap [b]$.
2. If $w \in [a] \cap [b]' \cap [w]'$ and $[a] \cap [b]' \cap [w]'$ are cliques.

Proof. By assumption, $[a] \cap [b] \subset [c]'$. This proves the first statement. By Lemma 1, $[w] \cap [b]'$ and $[a] \cap [w]'$ are cliques. So we have the second statement.

Lemma 3. If Γ is a strictly regular graph, then the smallest eigenvalue of Γ is not equal to -2.

Proof. Suppose that the smallest eigenvalue of Γ equals -2. By the Seidel Theorem [1], Γ is one of the following graphs: a triangle graph $T(m)$, a lattice graph $L_2(m)$, a Shrikhande graph with the same parameters as the graph $T(8)$, the Petersen graph, a Clebsch graph, and a Schl"afli graph. However, Shrikhande and Petersen graphs contain 3-stars. In a Clebsch graph, the antineighborhood of a vertex is the 5-clique. In Chang graphs, the antineighborhoods of vertices are not coedge regular. The other graphs do not contradict the theorem. The lemma is proved.

Consider nonadjacent vertices a and b. By $\Lambda_{a,b}$ denote the subgraph $[a]' \cap [b]'$ of the graph Γ. Put $\beta = |\Lambda_{a,b}|$. Then β does not depend on the choice of nonadjacent vertices a, b, and $\beta = v - 2k + \mu - 2$.

Lemma 4. Suppose that $\Lambda_{a,b}$ is a clique. Then $\beta = k - 2\mu + 1$ and $\Lambda_{x,y}$ is a clique for any two nonadjacent vertices x, y of the graph Γ.

Proof. If $e \in \Lambda_{a,b}$, then, by Lemma 2, $[e]$ contains μ vertices of $[a] \cap [b]'$ and μ vertices of $[a]' \cap [b]$. So $k = 2\mu + (\beta - 1)$, i.e., $\beta = k - 2\mu + 1$.

Let x, y be nonadjacent vertices and z belong to $\Lambda_{x,y}$. Then $[z]$ contains μ vertices of $[z] \cap [y]'$ and μ vertices of $[z]' \cap [y]$; the other $k - 2\mu$ vertices of $[z]$ belong to $\Lambda_{x,y}$. Hence, $\Lambda_{x,y}$ is a clique. The lemma is proved.

In Lemmas 5–14 we suppose that $\Lambda = \Lambda_{a,b}$ is a clique with β vertices, $\beta = k - \mu + 1$. We say that a vertex $c \in ([a] \cap [b]) \cup ([a]' \cap [b])$ is an i-point for Λ if $[c] \cap \Lambda = i$. Note that if an i-point c for Λ lies in $[a] \cap [b]'$, then c' does not contain i points of $[a] \cap [b]'$. In fact, $\Lambda_{b,c}$ contains $\beta - i$ points of Λ and i points of $[a] \cap [b]'$.

373