On the Number of Summands in the Asymptotic Formula for the Number of Solutions to Waring’s Equation

A. V. Ustinov

UDC 511.3

ABSTRACT. In the paper, an estimate of the number of summands in the asymptotic formula for the number of solutions to Waring’s equation is obtained. This is achieved by means of a recurrent process leading to a greater reduction than that in Vinogradov’s mean value theorem.

KEY WORDS: Waring’s problem, Waring’s equation, estimate of the number of summands, Fourier coefficients, Hardy’s equation, Vinogradov’s mean value theorem.

§1. Introduction

Let \(N_k(P)(\lambda_1, \ldots, \lambda_n) \) be the number of solutions of the system

\[
\begin{align*}
 x_1 + \cdots + x_k - y_1 - \cdots - y_k &= \lambda_1, \\
 \vdots & \\
 x^n_1 + \cdots + x^n_k - y^n_1 - \cdots - y^n_k &= \lambda_n, \\
 0 & \leq x_1, \ldots, y_k < P.
\end{align*}
\]

(Here and subsequently the variables take only integer values.) By Vinogradov’s mean value theorem, for \(k \geq nr \) the following estimate holds:

\[
N_k(P) = N_k(P)(0, \ldots, 0) \ll P^{2k-n^2/3} + P^{2k-n^2} (1 - \frac{1}{2})^r. \tag{1}
\]

Denote by \(I_k(P) \) the number of solutions of Hardy’s equation

\[
x^n_1 + \cdots + x^n_k - y^n_1 - \cdots - y^n_k = 0, \quad 0 \leq x_1, \ldots, y_k < P.
\]

Formula (1) allows us to obtain the following estimate for \(I_k(P) \):

\[
I_k(P) \ll \sum_{|\lambda_1| < kP} \cdots \sum_{|\lambda_{n-1}| < kP} N_k(P)(\lambda_1, \ldots, \lambda_{n-1}, 0) \ll P^{n(n-1)/2} N_k(P) \ll P^{2k-n+n^2} (1 - \frac{1}{2})^r. \tag{2}
\]

Let \(I(N) \) be the number of solutions to Waring’s equation

\[
x^n_1 + \cdots + x^n_k = N, \quad 0 \leq x_1, \ldots, x_k \leq N^{1/n}.
\]

In [1] it was proved that for \(n \geq 4 \) and \(k \geq 2[n^2(2\ln n + \ln \ln n + 5)] \) the following asymptotic formula is valid:

\[
I(N) = \sigma(N) \gamma N^{k/n-1} + O(N^{k/n-1-1}/(20^n \ln n)), \tag{3}
\]

where \(\gamma = (\Gamma(1 + 1/n))^k/\Gamma(k/n) \), \(\sigma(N) \geq c_0(n, k) > 0 \).

In the present paper we prove that for \(k \geq n(n-1) + nr \) the following estimate holds:

\[
I_k(P) \ll P^{2k-n+n^2} (1 - \frac{1}{2})^r.
\]

This result refines the estimate (2); this helps prove that formula (3) is valid for

\[
n \geq 4 \quad \text{and} \quad k \geq 2[n^2(\ln n + \ln \ln n + 6)].
\]
§2. Properties of the Fourier coefficients of some functions

In [2] the following assertion was proved.

Lemma 1. Suppose \(N_1, \ldots, N_n \) are nonnegative integers and \(F(\alpha_1, \ldots, \alpha_n) \) is a nonnegative real function defined on the cube \(E_n = [0, 1]^n \) and Lebesgue integrable. Suppose that the Fourier coefficients \(c(\lambda_1, \ldots, \lambda_n) \) of \(F(\alpha_1, \ldots, \alpha_n) \) are also nonnegative real numbers. Then, for any integers \(\mu_1, \ldots, \mu_n \), the following inequality is valid:

\[
\sum_{|\lambda_1| \leq N_1} \cdots \sum_{|\lambda_n| \leq N_n} c(\lambda_1 + \mu_1, \ldots, \lambda_n + \mu_n) \leq 4^n \sum_{|\lambda_1| \leq N_1} \cdots \sum_{|\lambda_n| \leq N_n} c(\lambda_1, \ldots, \lambda_n).
\]

In subsequent arguments we shall need Lemmas 2 and 3, whose proof is similar to that of Lemma 1.

Lemma 2. Suppose that \(N \) is a nonnegative real number, \(a \) and \(b \) are integers, and \(q \) is a positive integer. Suppose also that \(F(\alpha) \) is a nonnegative real function that can be expressed as a finite Fourier series with nonnegative coefficients \(c(\lambda) \). Then the following inequalities are valid:

\[
\sum_{|\lambda| \leq N} c(a\lambda + b) \leq 4q \int_0^1 F(\alpha) \Phi(\alpha) \, d\alpha \leq 4q \sum_{|\lambda| \leq Nq^{-1}} c(aq\lambda),
\]

where

\[
\Phi(\alpha) = \sum_{|\lambda| \leq Nq^{-1}} \left(1 - \frac{|\lambda|}{[Nq^{-1}] + 1}\right)e^{-2\pi i a q\lambda} \geq 0.
\]

Proof. Let us prove the lemma in the case \(a = 1 \). For arbitrary \(a \), the proof is the same. Let \(N_1 = [Nq^{-1}] + 1 \). Then

\[
\sum_{|\lambda| \leq N} c(\lambda + b) \leq \sum_{\mu=0}^{q-1} \sum_{|\lambda| \leq N} c(q\lambda + \mu + b) = \sum_{\mu=0}^{q-1} \sigma(\mu),
\]

where

\[
\sigma(\mu) = \sum_{|\lambda| \leq N} c(q\lambda + \mu + b).
\]

Let us estimate \(\sigma(\mu) \):

\[
s(\mu) = \frac{1}{N_1^2} \sum_{x,y=0}^{N_1} \sum_{|\lambda + x - y| \leq N_1} c(q\lambda + x - y + \mu + b) \leq \frac{1}{N_1^2} \sum_{x,y=0}^{N_1} \sum_{|\lambda| \leq Nq^{-1}} c(q(\lambda + x - y) + \mu + b)
\]

\[
= \frac{1}{N_1^2} \sum_{x,y=0}^{N_1} \sum_{|\lambda| \leq Nq^{-1}} \int_0^1 F(\alpha) e^{-2\pi i q(\lambda + x - y) + \mu + b)} \, d\alpha
\]

\[
= \frac{1}{N_1^2} \int_0^1 F(\alpha) \left| \sum_{x=1}^{N_1} e^{-2\pi i q\lambda x} \right|^2 \sum_{|\lambda| \leq Nq^{-1}} e^{-2\pi i q(\lambda + \mu + b)} \, d\alpha.
\]

Estimating the last sum trivially, we obtain

\[
\sigma(\mu) \leq \frac{4}{N_1} \int_0^1 F(\alpha) \left| \sum_{x=1}^{N_1} e^{-2\pi i q\lambda x} \right|^2 \, d\alpha
\]

\[
= \frac{4}{N_1} \int_0^1 F(\alpha) \sum_{|\lambda| \leq Nq^{-1}} (N_1 - |\lambda|) e^{-2\pi i \lambda q} \, d\alpha = 4 \int_0^1 F(\alpha) \Phi(\alpha) \, d\alpha.
\]

Hence we have

\[
\sigma(\mu) \leq 4 \int_0^1 F(\alpha) \Phi(\alpha) \, d\alpha = 4 \sum_{|\lambda| \leq Nq^{-1}} \left(1 - \frac{|\lambda|}{N_1}\right) c(q\lambda) \leq 4 \sum_{|\lambda| \leq Nq^{-1}} c(q\lambda).
\]

Substituting the inequalities obtained into (5), we obtain the assertion of the lemma. \(\square\)