On the Envelopes of Abelian Subgroups in Connected Lie Groups

V. V. Gorbatsevich

UDC 512.81

ABSTRACT. An Abelian subgroup A in a Lie group G is said to be regular if it belongs to a connected Abelian subgroup C of the group G (then C is called an envelope of A). A strict envelope is a minimal element in the set of all envelopes of the subgroup A. We prove a series of assertions on the envelopes of Abelian subgroups. It is shown that the centralizer of a subgroup A in G is transitive on connected components of the space of all strict envelopes of A. We give an application of this result to the description of reductions of completely integrable equations on a torus to equations with constant coefficients.

Let A be an Abelian subgroup in a connected Lie group G. The subgroup A is said to be regular in G if it is contained in a connected Abelian Lie subgroup C of the group G (then C is called an envelope of A). If a subgroup A is regular, then we shall mainly pay attention to minimal envelopes; we call them strict envelopes (since the envelopes are connected, it is clear that, in the ordinary set-theoretical sense, minimal envelopes exist). For the strict envelope A^* of an Abelian subgroup A, its Lie algebra $L(A^*)$ is a minimal element of the set of Abelian Lie subalgebras of the Lie algebra $L(G)$ of the Lie group G for which their image under the exponential mapping $\exp: L(G) \to G$ contains the original Abelian subgroup A. Denote by $E(A, G)$ the set of all strict envelopes of a subgroup A in the Lie group G. Since a connected Lie subgroup is uniquely defined by its Lie algebra, this set is naturally identified with the set of Lie subalgebras of $L(G)$ that correspond to strict envelopes. Applying this identification, we can introduce a natural topology on $E(A, G)$ (see below). In this paper we present the description of all connected components of the topological space $E(A, G)$ by representing these components as orbits of the action of a connected Lie group that is determined by G and by the subgroup A. As special cases, this description contains the results of A. I. Mal'tsev [1] (on the strict envelopes of the center $Z(G)$ of a connected Lie group G) and T. Nono [2] (on the one-parameter subgroups in a connected Lie group G that pass through a chosen element $g \in G$). Moreover, we indicate an application to the study of completely integrable differential equations on the torus \mathbb{T}^n, which concerns their possible reduction to equations with constant coefficients (for details on such equations, see [3, 4]).

First, we briefly consider the existence problem for an envelope of a given Abelian subgroup A in a connected Lie group G. Not every Abelian subgroup has such an envelope and thus is regular. For example, let $G = K$ be a connected simple compact Lie group. Then it is known that all finite (and even all compact) Abelian subgroups of K are regular if and only if the Lie group K is simply connected and its cohomology group with integral coefficients $H^*(K, \mathbb{Z})$ is torsion-free (that is, $H^*(K, \mathbb{Z})$ is a free Abelian group) [5, 6]. As is well known, a simple simply connected Lie group whose cohomology is torsion-free is isomorphic to $\text{SU}(n)$ or $\text{Sp}(n)$ for some $n \in \mathbb{N}$. Furthermore, for an arbitrary prime p, any subgroup of a simply connected compact simple Lie group K that is isomorphic to $\mathbb{Z}_p \oplus \mathbb{Z}_p \oplus \mathbb{Z}_p$ is regular if and only if $H^*(K, \mathbb{Z})$ is p-torsion-free [5]. Similar results hold for finite Abelian subgroups of arbitrary connected Lie groups G (because the problem is reduced to the consideration of finite Abelian subgroups in a maximal compact subgroup K of the Lie group G) and also for Abelian subgroups A of complex algebraic Lie groups all of whose elements $g \in A$ are semisimple (that is, completely reducible) [6]. As far as the regularity problem for more general Abelian subgroups is concerned, at present there are only some particular results in this direction [7].

If A is a regular Abelian subgroup of a connected Lie group G, then we have $A \subseteq \exp(L(C))$, where $L(C)$ is a Lie subalgebra of $L(G)$ corresponding to an envelope C of the subgroup A. Therefore,
an arbitrary regular Abelian subgroup is contained in the image of the exponential mapping for the Lie group G. If for a Lie group G the mapping \exp is not surjective, then in G there exist Abelian subgroups that are not regular. More precisely, if we have $g \in G \setminus \exp(L(G))$, then the cyclic subgroup $A = \{g^k\}$ generated by the element g is clearly not regular in G.

Furthermore, for a connected Lie group G we consider its center $Z(G) = A$. For this Abelian subgroup A, the regularity problem was considered by A. I. Mal'tsev in [1]. In particular, he proved that if G is solvable, then $Z(G)$ is a regular Abelian subgroup (in fact, in [1] the proof is given only for the case in which G is simply connected, but in the editor’s note to the paper [1] reprinted in the selected works of A. I. Mal'tsev, it is shown how to prove the result for the non-simply-connected case). If G is a connected semisimple Lie group, then its center is contained in a Cartan subgroup H of a characteristic subgroup of the group G (see [8], where by a characteristic subgroup of a semisimple Lie group G a maximal Lie subgroup with compact embedding is meant). Since H is connected, we see that for a semisimple Lie group G its center is a regular subgroup. Now let G be an arbitrary connected Lie group. Consider its Levi decomposition $G = S \cdot R$ (where R is the radical and S is a semisimple part, i.e., a Levi subgroup) and the natural epimorphism $\pi: G \to S' = G/R$ onto a semisimple Lie group S' (which is locally isomorphic to S) with kernel R. Then $\pi(Z(G))$ is a central subgroup of S'; therefore, by the above discussion this subgroup is contained in a connected Abelian Lie subgroup H of the Lie group S'. By setting $G' = \pi^{-1}(H)$, we obtain a connected solvable Lie subgroup of G, which contains $Z(G)$. Clearly, $Z(G) \subseteq Z(G')$; therefore, since $Z(G')$ is regular in G' (see above), we see that $Z(G)$ is a regular subgroup of G'. Then $Z(G)$ is regular in G as well, and this proves the following statement.

Proposition 1. The center $Z(G)$ of an arbitrary connected Lie group G is a regular subgroup of G.

Note that in [1] a weaker assertion was proved: $Z(G)$ contains a regular subgroup of finite index. Below we show how to derive another result of the paper [1] on these subgroups from the results of our paper.

If A is an Abelian subgroup of G and A is contained in a connected nilpotent subgroup, then, in general, A can be nonregular in G. For example, consider the Lie group $F = N(3, \mathbb{R})$ of unipotent real matrices of order 3 and the lattice $\Gamma = N(3, \mathbb{Z})$ in it, which is the discrete subgroup consisting of integral unipotent matrices. Furthermore, consider the center $Z(F)$ (this group is isomorphic to \mathbb{R}) and its intersection with Γ; we can readily verify that this intersection is isomorphic to \mathbb{Z}. Now we set $G = F/Z(F) \cap \Gamma$ and $A = \Gamma/Z(F) \cap \Gamma$. It is easy to verify that the group A is isomorphic to \mathbb{Z}^2, in particular, it is Abelian. The Lie group G is nilpotent of nilpotency class 2. Here we can directly verify that any maximal connected Abelian Lie subgroup of G is two-dimensional and isomorphic to $S^1 \times \mathbb{R}^1$ (where the Lie group S^1 is isomorphic to $SO(2)$). However, every such Abelian Lie subgroup cannot contain A as a subgroup, because A is a discrete subgroup of G isomorphic to \mathbb{Z}^2. Thus, in the connected nilpotent Lie group G, we obtain an Abelian subgroup which is not contained in any connected Abelian Lie subgroup of the group G, that is, A is not a regular subgroup. A peculiarity of the above example is that the corresponding connected nilpotent Lie group G is not linear (i.e., it has no faithful finite-dimensional linear representation). The next assertion shows that this peculiarity is not accidental.

Proposition 2. Let G be a connected nilpotent linear Lie group. Then an arbitrary Abelian subgroup of G is regular.

Proof. In [1] it was proved that a connected solvable linear Lie group can be decomposed into the semidirect product of a connected Abelian compact subgroup (torus) and a simply connected normal subgroup. Therefore, for a Lie group G, we have the decomposition $G = T \cdot G_1$, where T is a torus and G_1 is a simply connected nilpotent Lie group. Since in a nilpotent connected Lie group any connected compact subgroup is central (and therefore normal) in G, the semidirect product $T \cdot G_1$ is direct for the case under consideration. Thus, we obtain the decomposition of G into the direct product $T \times G_1$. Denote by $\pi: T \times G_1 \to G_1$, the projection onto the direct factor. We set $A_1 = \pi(A)$; this is an Abelian subgroup in the simply connected nilpotent Lie group G_1. As is known, on the Lie group G_1 there is a natural structure of a real algebraic group. Denote by $\langle \pi(A) \rangle$ the algebraic closure of the subgroup $\langle \pi(A) \rangle$ in the algebraic group G_1; clearly, $\langle \pi(A) \rangle$ is a connected Abelian Lie group. We set $C = \pi^{-1}(\langle \pi(A) \rangle)$; it is a connected Abelian Lie subgroup of G that contains the original Abelian subgroup A. Hence, the subgroup A is regular in G. \[\square \]