ON CONJUGACY OF HIGH-ORDER LINEAR ORDINARY DIFFERENTIAL EQUATIONS

T. CHANTURIA

ABSTRACT. It is shown that the differential equation

\[u^{(n)} = p(t)u, \]

where \(n \geq 2 \) and \(p : [a, b] \rightarrow \mathbb{R} \) is a summable function, is not conjugate in the segment \([a, b]\), if for some \(I \in \{1, \ldots, n-1\} \), \(\alpha \in [a, b] \), and \(\beta \in [a, b] \) the inequalities

\[n \geq 2 + \frac{1}{2}(1 + (-1)^{n-1}), \quad (-1)^{n-I}p(t) \geq 0 \text{ for } t \in [a, b], \]

\[\int_{a}^{\beta} \frac{(t-a)^{n-2}(b-t)^{n-2}|p(t)|dt \geq (n-l)^{l}\frac{(b-a)^{n-1}}{(b-\beta)(\alpha-a)} \]

hold.

Consider the differential equation

\[u^{(n)} = p(t)u, \quad (1) \]

where \(n \geq 2 \), \(p \in L_{loc}(I) \), and \(I \subset \mathbb{R} \) is an interval.

The following definitions will be used below.

Equation (1) is said to be conjugate in \(I \) if there exists a nontrivial solution of this equation with at least \(n \) zeroes (each zero counted accordingly to its multiplicity) in \(I \).

Let \(I \in \{1, \ldots, n-1\} \). Equation (1) is said to be \((l, n-l)\) conjugate in \(I \) if there exists a nontrivial solution \(u \) of this equation satisfying

\[u^{(l)}(t_1) = 0 \quad (i = 0, \ldots, l-1), \]

\[u^{(l)}(t_2) = 0 \quad (i = 0, \ldots, n-l-1), \]

with \(t_1, t_2 \in I \) and \(t_1 < t_2 \).

Suppose first that \(-\infty < a < b < +\infty\) and \(p \in L([a, b]) \).

1991 Mathematics Subject Classification. 34C10.
Lemma. Let $a < \alpha < \beta < b$. Then the Green's function G of the problem

\[u^{(n)}(t) = 0 \quad \text{for } t \in [a, b], \]
\[u^{(j)}(a) = 0 \quad (j = 0, \ldots, l - 1), \]
\[u^{(j)}(b) = 0 \quad (j = 0, \ldots, n - l - 1), \]

satisfies the inequality

\[(-1)^{n-l} G(t, s) > \frac{(b - \beta)(\alpha - a)(s - a)^{n-l-1}(b - s)^{l-1}(t - a)^{l-1}(b - t)^{n-l-1}}{(b - a)^{n-l}} \times \]
\[\times \sum_{i=1}^{n-l} \frac{(-1)^{n-l-i}}{(i-1)!(n-i)!} \quad \text{for } a \leq t < s \leq \beta. \quad (2) \]

Proof. The function G can be written in the form

\[G(t, s) = \begin{cases}
\sum_{i=n-l+1}^{n} (-1)^{i-1} x_i(t)x_{n-i+1}(s) & \text{for } a \leq s < t \leq b, \\
-\sum_{i=1}^{n-l} (-1)^{i-1} x_i(t)x_{n-i+1}(s) & \text{for } a \leq t \leq s \leq b,
\end{cases} \]

where

\[x_i(t) = \frac{(t - a)^{n-i}(b - t)^{i-1}}{(i-1)!(b - a)^{n-i}}. \]

It is easy to verify that for any fixed $s \in [a, b]$ the function \(\frac{(-1)^{n-l} G(t, s)}{x_{n-l+1}(t)x_{n+1}(s)} \) decreases on \([a, b]\) and the function \(\frac{(-1)^{n-l} G(t, s)}{x_{n-l+1}(t)x_{n+1}(s)} \) increases on \([a, b]\). Thus

\[(-1)^{n-l} G(t, s) \geq (-1)^{n-l} G(s, s) \frac{x_{n-l}(t)}{x_{n-l}(s)} \quad \text{for } t \leq s. \quad (3) \]

Taking into account that

\[(-1)^{n-l} G(s, s) = (-1)^{n-l} \sum_{i=1}^{n-l} (-1)^{i-1} x_i(s)x_{n-i+1}(s) = \]
\[= \frac{(s - a)^{n-l}(b - s)^{n-l}}{(b - a)^{n-l}} \sum_{i=1}^{n-l} \frac{(-1)^{n-l-i}}{(i-1)!(n-i)!} \]
and

\[\frac{x_{n-l}(t)}{x_{n-l}(s)} = \frac{(t - a)^l(b - s)^{n-l-1}}{(s - a)^l(b - s)^{n-l-1}}, \]