Sequences of Maximal Terms and Central Exponents of Derivatives of Dirichlet Series

M. N. Sheremeta

ABSTRACT. For the Dirichlet series corresponding to a function \(F \) with positive exponents increasing to \(\infty \) and with abscissa of absolute convergence \(A \in (-\infty, +\infty) \), it is proved that the sequences \((\mu(\sigma, F^{(m)})) \) of maximal terms and \((\Lambda(\sigma, F^{(m)})) \) of central exponents are nondecreasing to \(\infty \) as \(m \to \infty \) for any given \(\sigma < A \), and

\[
\lim_{m \to \infty} \frac{\ln \mu(\sigma, F^{(m)})}{m \ln m} \leq 1 \quad \text{and} \quad \lim_{m \to \infty} \frac{\ln \Lambda(\sigma, F^{(m)})}{\ln m} \leq 1.
\]

Necessary and sufficient conditions for putting the equality sign and replacing \(\lim \) by \(\lim \) in these relations are given.

KEY WORDS: Dirichlet series, maximal term, central exponent.

§1. Introduction

Let \(0 < \lambda_n \uparrow \infty \) and \(n \to \infty \), and let the Dirichlet series

\[
F(s) = \sum_{n=1}^{\infty} a_n \exp(s \lambda_n), \quad s = \sigma + it,
\]

have abscissa of absolute convergence \(A \in (-\infty, +\infty) \). We shall assume that all \(a_n \neq 0 \), so that the series (1) is not an exponential polynomial. For \(\sigma \in (-\infty, A) \), let \(\mu(\sigma, F) = \max\{|a_n| \exp(\sigma \lambda_n) : n \geq 1\} \) be the maximal term, let \(\nu(\sigma, F) = \max\{n \geq 1 : |a_n| \exp(\sigma \lambda_n) = \mu(\sigma, F)\} \) be the central index, and let \(\Lambda(\sigma, F) = \lambda_{\nu(\sigma, F)} \) be the central exponent of the series (1).

In the present paper we study the asymptotic behavior as \(m \to \infty \) of the sequences \((\mu(\sigma, F^{(m)})) \) and \((\Lambda(\sigma, F^{(m)})) \) for each given \(\sigma \in (-\infty, A) \), where \(F^{(m)} \) is the derivative of the function \(F \) of order \(m \in \mathbb{Z}_+ \).

The following theorem is valid.

Theorem 1. For each prescribed \(\sigma \in (-\infty, A) \), the sequences \((\mu(\sigma, F^{(m)})) \) and \((\Lambda(\sigma, F^{(m)})) \) are nondecreasing and tend to \(\infty \) as \(m \to \infty \).

The next theorem deals with the rate of growth of these sequences.

Theorem 2. For each prescribed \(\sigma \in (-\infty, A) \), we have

\[
\lim_{m \to \infty} \frac{\ln \mu(\sigma, F^{(m)})}{m \ln m} \leq 1 \tag{2}
\]

and

\[
\lim_{m \to \infty} \frac{\ln \Lambda(\sigma, F^{(m)})}{\ln m} \leq 1. \tag{3}
\]

The estimates (2) and (3) are sharp. This is a consequence of the following theorem.
Theorem 3. Let \(\sigma \in (-\infty, A) \). One has
\[
\lim_{m \to \infty} \frac{\ln \mu(\sigma, F^{(m)})}{m \ln m} = 1
\]
and
\[
\lim_{m \to \infty} \frac{\ln \Lambda(\sigma, F^{(m)})}{m} = 1
\]
if and only if
\[
\lim_{n \to \infty} \frac{1}{\ln \lambda_n} \ln \left(\frac{1}{\lambda_n} \ln \frac{1}{|a_n|} - \sigma \right) = 0.
\]

The natural question is: When can we replace \(\lim \) by \(\lim \) in (4) and (5)? The following theorem yields an answer to this question.

Theorem 4. Let \(\sigma \in (-\infty, A) \). One has
\[
\lim_{m \to \infty} \frac{\ln \mu(\sigma, F^{(m)})}{m \ln m} = 1
\]
and
\[
\lim_{m \to \infty} \frac{\ln \Lambda(\sigma, F^{(m)})}{m} = 1
\]
if and only if for any \(\varepsilon > 0 \) the following condition is satisfied:

1) for \(n \geq n_0(\varepsilon) \), the following inequality holds:
\[
\frac{1}{\ln \lambda_n} \ln \left(\frac{1}{\lambda_n} \ln \frac{1}{|a_n|} - \sigma \right) > -\varepsilon;
\]

2) there exists an increasing sequence \((n_k) \) of natural numbers such that \(\ln \lambda_{n_{k+1}} \sim \ln \lambda_{n_k} \) as \(k \to \infty \) and
\[
\frac{1}{\ln \lambda_{n_k}} \ln \left(\frac{1}{\lambda_{n_k}} \ln \frac{1}{|a_{n_k}|} - \sigma \right) < \varepsilon.
\]

A few corollaries of Theorems 3 and 4 are given at the end of the paper.

§2. Auxiliary results

Let \(\Omega \) be the class of positive functions \(\Phi \) unbounded on \((-\infty, +\infty)\) and such that the derivative \(\Phi' \) is continuous, positive, and increasing to \(+\infty \) on \((-\infty, +\infty)\). Let \(\varphi \) be the inverse of \(\Phi' \), and let \(\Psi(\sigma) = \sigma - \Phi(\sigma)/\Phi'(\sigma) \) be the function associated with \(\Phi \) in the sense of Newton.

Lemma 1 [1]. Suppose that \(\Phi \in \Omega \) and the Dirichlet series (1) has abscissa of absolute convergence \(A = +\infty \). For \(\ln \mu(\sigma, F) \leq \Phi(\sigma) \) to hold for all \(\sigma \geq \sigma_0 \), it is necessary and sufficient that \(\ln |a_n| \leq -\lambda_n \Psi(\varphi(\lambda_n)) \) for all \(n \geq n_0 \).

For arbitrary \(\varepsilon > 0 \), choose a function \(\Phi \in \Omega \) so that \(\Phi(\sigma) = (1 + \varepsilon)\sigma \ln \sigma \) for all sufficiently large \(\sigma \). Then \(\Phi'(\sigma) = (1 + \varepsilon)(\ln \sigma + 1) \), \(\Psi(\sigma) = \sigma/(\ln \sigma + 1) \), \(\varphi(t) = \exp(t/(1 + \varepsilon) - 1) \), \(t\Phi(\varphi(t)) = (1 + \varepsilon)\exp(t/(1 + \varepsilon) - 1) \). Therefore, by Lemma 1, for \(\ln \mu(\sigma, F) \leq (1 + \varepsilon)\sigma \ln \sigma \) to hold for all sufficiently large \(\sigma \), it is necessary and sufficient that \(\ln |a_n| \leq -(1 + \varepsilon)\exp(\lambda_n/(1 + \varepsilon) - 1) \) for all sufficiently large \(n \). This implies the following assertion.