Abstract

A concept of finite coverings of continua with a linear order of their members is given. A characterization is obtained of hereditarily locally connected continua which have a finite supremum of cardinalities of the considered coverings.

Finite coverings of continua were introduced in [2]. We recall this concept. Let \(X \) be a metric continuum and \(n \) be a positive integer. By an \(n \)-covering of \(X \) we mean a family \(\mathcal{C} = \{X_1, X_2, \ldots, X_n\} \) of \(n \) its subcontinua such that \(X = \bigcup\{X_i : i \in \{1, \ldots, n\}\} \). An \(n \)-covering of \(X \) is said to be linear if the following conditions hold, where \(i, j \in \{1, \ldots, n\} \): for each \(i \) we have \(X_i \setminus \bigcup \{X_j : j \neq i\} \neq \emptyset \); and \(X_i \cap X_j \neq \emptyset \) if and only if \(|i - j| \leq 1 \). In [3] we have defined the linear number \(\lambda(X) \) of a continuum \(X \) as \(\lambda(X) = \sup\{n \in \mathbb{N} : \text{there exists a linear } n\text{-covering of } X\} \). If this number is not finite, we write \(\lambda(X) = \infty \).

In that paper [3] we have presented some sufficient conditions to have infinite linear numbers of locally connected continua. We have obtained a characterization of locally connected continua with finitely many ramification points and with a finite linear number.

Recall (see [1]) that a point \(p \) of a continuum \(X \) is called a ramification point of \(X \) provided that there are at least three arcs in \(X \) each pair of which has \(p \) as the only common point. An arc \(A \) with end points \(p \) and \(q \) which is contained in a space \(X \) is called a free arc provided that \(A \setminus \{p, q\} \) is an open subset of \(X \). We say that a set \(S \) strongly disconnects a space \(X \) provided there are two subsets \(U \) and \(V \) of \(X \) such that \(X \setminus S = U \cup V \) and \(\overline{U} \cap \overline{V} = \emptyset \).

The following proposition and lemma have been shown in [3].

Proposition 1. If a continuum \(X \) contains a free arc that strongly disconnects \(X \), then \(\lambda(X) = \infty \).

Key words and phrases. Arc, chord, continuum, covering, finite, hereditarily, linear, locally connected, ramification point, simple closed curve.
LEMMA 2. Let a locally connected continuum X do not contain any free arc that strongly disconnects X, and let \mathcal{C}_n be a linear n-covering of X. Then for each free arc $pq \subset X$ two members of \mathcal{C}_n are enough to cover pq.

To show the main theorem which characterizes hereditarily locally connected continua having finite linear numbers, we need some definitions.

Let a simple closed curve S be given. Each arc ab with $ab \cap S = \{a, b\}$ is called a chord of S. We consider a set of n pairwise disjoint chords of S such that the end points of each chord can be labelled as a_i, b_i for $i \in \{1, 2, \ldots, n\}$ in such a way that there are two points p and q of S with the property that one arc, A, from p to q in S contains all points a_i with its natural order in the set $A \setminus \{p, q\}$, while the other one, B, contains all the points b_i with the same order (from p to q) in the set $B \setminus \{p, q\}$. Also we put

\begin{equation}
(3) \quad a_0 = b_1, \quad b_0 = a_1 \quad \text{and} \quad a_{n+1} = b_n, \quad b_{n+1} = a_n
\end{equation}

(this means that the chords a_1b_1 and a_nb_n are also considered as b_0a_0 and $b_{n+1}a_{n+1}$ respectively).

The above discussed set of n chords is said to be independent provided that there does not exist any chord ab of S such that

\begin{equation}
(4) \quad \text{for some } i, j \in \{0, 1, 2, \ldots, n\} \text{ with } |i - j| > 1 \text{ we have either } a \in a_ia_{i+1} \text{ and } b \in a_ja_{j+1} \cup b_jb_{j+1} \text{ or } a \in b_ib_i+1 \text{ and } b \in b_jb_{j+1}, \text{ and}
\end{equation}

\begin{equation}
(5) \quad \text{for each } i_0 \text{ with } i < i_0 < j \text{ (where } i \text{ and } j \text{ are as in (4) above) we have } a_0 \cap a_{i_0}b_{i_0} = \emptyset.
\end{equation}

LEMMA 6. Let X be a hereditary locally connected continuum which contains a simple closed curve S with an independent set of k chords. Then there exists a linear covering of X with at least $m = \lceil k/2 \rceil + 2$ members (here $\lceil k/2 \rceil$ means the integral part of $k/2$).

PROOF. Consider an independent set of k chords a_ib_i, where $i \in \{1, 2, \ldots, k\}$, of S. For each i denote by L_i the arc with end points a_i and b_i contained in S and such that for each $j \in \{1, 2, \ldots, k\}$ we have $(a_j, b_j) \cap L_i \neq \emptyset$ if and only if $j \leq i$. Take now two points c and d in $L_1 \setminus \{a_1, b_1\}$ with $c \in a_1d$ and $d \in cb_1$, and let V_1 be an open connected set containing the arc cd and such that $V_1 \cap (S \setminus L_1 \cup a_1b_1 \cup a_2b_2) = \emptyset$. Denote by C_1 the component of $X \setminus V_1$ containing $S \setminus L_1$, and put $X_1 = X \setminus C_1$. Next take the subarcs $ca_1 \cup a_1a_2 = ca_2$ and $db_1 \cup b_1b_2 = db_2$ of L_2 and consider an open connected set V_2 in C_1 containing the set $(ca_2 \cup db_2 \cup a_1b_1 \cup a_2b_2) \cap C_1$ and such that $V_2 \cap (S \setminus L_3 \cup a_3b_3 \cup a_4b_4) = \emptyset$. Denote by C_2 the component of $C_1 \setminus V_2$ which contains $S \setminus L_3$ and define $X_2 = C_1 \setminus C_2$.

In general, for an index i such that $3 \leq i \leq \lceil k/2 \rceil + 1$, take the subarcs $a_{2i-4}a_{2i-2}$ and $b_{2i-4}b_{2i-2}$ of L_{2i-2} and an open connected set V_i in C_{i-1} containing the set

\begin{equation}
(a_{2i-4}a_{2i-2} \cup b_{2i-4}b_{2i-2} \cup a_{2i-3}b_{2i-3} \cup a_{2i-2}b_{2i-2}) \cap C_{i-1}
\end{equation}