WEYL GROUPS AS GALOIS GROUPS OF A REGULAR EXTENSION OF THE FIELD Q

Ya. N. Nuzhin

For a finite group G, $\text{Gal}_T(G)$ denotes the property that there exists a regular Galois extension of the rational function field $\mathbb{Q}(T)$ over the field of rationals \mathbb{Q}, with a Galois group G. This property is established to be satisfied by all Weyl groups except the type F_4, from which it follows that it holds also for Chevalley groups $C_3(2)$ and $D_4(2)$.

Denote by $\text{Gal}_T(G)$ the following property of a finite group G: there exists a regular Galois extension of the rational function field $\mathbb{Q}(T)$ over the field of rationals \mathbb{Q}, with a Galois group G. This property implies that there exist infinitely many Galois extensions of \mathbb{Q} with a Galois group G which are linearly separated from each other (see [1]). In this article we prove the following:

THEOREM. If W is a Weyl group of type not F_4, then the property $\text{Gal}_T(W)$ is satisfied.

In proving the theorem, we rely on the results of Belyi [2]. Namely, for all Weyl groups (except the types D_{2k} and F_4), we use a uniform method to find a rigid (rational) triplet, and then our theorem follows directly from [2].

The fact that the theorem is valid for the case where a Weyl group W of type A_i is isomorphic to the symmetric group S_{i+1} was known as early as the time of Hilbert [3] (see also the survey in [1], where an example of a rigid rational triplet for S_{i+1} is given).

Since the property $\text{Gal}_T(W)$ is satisfied for Weyl groups of types E_7 and E_8, we can infer the following:

COROLLARY. If G is a Chevalley group of type $C_3(2)$ or $D_4(2)$, then the property $\text{Gal}_T(G)$ is satisfied.

1. Throughout, Φ is a reduced indecomposable root system, $\pi = \{r_1, r_2, \ldots, r_l\}$ is the set of fundamental roots of Φ such that r_1 is a short root, and W is the Weyl group of type Φ generated by fundamental reflections w_{r_i}. The alignment of fundamental roots is shown in the following Dynkin’s diagram:

We distinguish \(c = w_{r_1} w_{r_2} \ldots w_{r_l} \), one of the Coxeter elements.

Proposition 1 (see [4, 5]). Suppose that \(W \) is of type distinct from \(B_1, D_{2k}, \) or \(F_4 \). Then \(W = \langle c, w_{r_2} \rangle \).

Proposition 2 (see [6]). Let

\[
s_i = w_{r_1} w_{r_{i-1}} \ldots w_{r_{i+1}}(r_i), \quad i = 1, \ldots, l,
\]

and let \(\Phi_i \) be the orbit of the root \(s_i \) with respect to the group \(\langle c \rangle \). Then the subsets \(\Phi_i \) intersect pairwise trivially and exhaust all the orbits of \(\langle c \rangle \) in \(\Phi \).

2. Let \(C_1, \ldots, C_k \) \((k \geq 3)\) be conjugacy classes of a finite group \(G \). Denote by \(P = P(C_1, \ldots, C_k) \) the set of \(k \)-tuples \((g_1, \ldots, g_k) \in C_1 \times \ldots \times C_k\) such that \(g_1 g_2 \ldots g_k = 1 \) and \(G = \langle g_1, \ldots, g_k \rangle \). The collection \((C_1, \ldots, C_k) \) is called rigid if \(P \) is not empty and \(G \) acts transitively (by conjugation) on \(P \).

A conjugacy class \(C \) of a group \(G \) is said to be rational if each character of \(G \) takes a rational value on \(C \).

Proposition 3 (see [2]). Suppose that a finite group \(G \) satisfies the following conditions:

1. \(G \) has a rigid rational triplet \((C_a, C_b, C_{a+b-1})\);

2. \(Z(G) \) is a direct summand in \(N_G((a)) \).

Then the property \(\text{Gal}_P(G) \) is satisfied.

Here \(C_x \) is a conjugacy class with a representative \(x \), \(N_G(A) \) is the normalizer of a subgroup \(A \) in a group \(G \), and \(Z(G) \) is the center of \(G \).

3. Proof of the theorem. Suppose that the type of \(W \) is distinct from \(B_1, D_{2k}, \) or \(F_4 \) and let \(C_1, C_2, \) and \(C_3 \) be the conjugacy classes of \(W \) with representatives \(w_{r_1}, c, \) and \(c^{-1}w_{r_1} \), respectively. It is well known that all conjugacy classes of a Weyl group are rational (see, e.g., [1]). Therefore, by virtue of Proposition 3, the theorem follows from the following two lemmas.

Lemma 1. The triple \((C_1, C_2, C_3)\) is a rigid triplet of the group \(W \).

Proof. By Proposition 1 we have \(W = \langle w_{r_1}, c \rangle \). Let \(a_i \in C_i \) and \(W = \langle a_1, a_2, a_3 \rangle \). Without loss of generality, we may assume that \(a_2 = c \) and \(a_1 = w_r \) for some root \(r \in \Phi \). It is sufficient to show that \(c^l(r) = r_1 \) for some \(i \in Z \).

By Proposition 2, as representatives of the orbits of the group \(\langle c \rangle \) in \(\Phi \) we can take the following elements:

- \(r_1 + \ldots + r_1, r_2 + \ldots + r_1, \ldots, r_1 \) for \(\Phi \neq D_1, E_6 \);
- \(r_1 + r_3 + \ldots + r_1, r_2 + r_3 + \ldots + r_1, \ldots, r_1 \) for \(\Phi = D_7 \);
- \(r_1 + \ldots + r_1, r_1-3 + \ldots + r_1, r_1-2 + \ldots + r_1, r_1, r_1 \) for \(\Phi = E_6 \).

So we can assume that \(r \) coincides with one of the roots indicated above.

Suppose that \(r \) is one of the following:

- \(r_1 + \ldots + r_1 \) or \(r_1 \) for \(\Phi = A_1 \);