WEYL GROUPS AS GALOIS GROUPS OF A REGULAR
EXTENSION OF THE FIELD Q

Ya. N. Nuzhin

For a finite group \(G \), \(\text{Gal}_T(G) \) denotes the property that there exists a regular Galois extension of the rational function field \(\mathbb{Q}(T) \) over the field of rationals \(\mathbb{Q} \), with a Galois group \(G \). This property is established to be satisfied by all Weyl groups except the type \(F_4 \), from which it follows that it holds also for Chevalley groups \(C_3(2) \) and \(D_4(2) \).

Denote by \(\text{Gal}_T(G) \) the following property of a finite group \(G \): there exists a regular Galois extension of the rational function field \(\mathbb{Q}(T) \) over the field of rationals \(\mathbb{Q} \), with a Galois group \(G \). This property implies that there exist infinitely many Galois extensions of \(\mathbb{Q} \) with a Galois group \(G \) which are linearly separated from each other (see [1]). In this article we prove the following:

THEOREM. If \(W \) is a Weyl group of type not \(F_4 \), then the property \(\text{Gal}_T(W) \) is satisfied.

In proving the theorem, we rely on the results of Belyi [2]. Namely, for all Weyl groups (except the types \(D_{2k} \) and \(F_4 \)), we use a uniform method to find a rigid (rational) triplet, and then our theorem follows directly from [2].

The fact that the theorem is valid for the case where a Weyl group \(W \) of type \(A_n \) is isomorphic to the symmetric group \(S_{n+1} \) was known as early as the time of Hilbert [3] (see also the survey in [1], where an example of a rigid rational triplet for \(S_{n+1} \) is given).

Since the property \(\text{Gal}_T(W) \) is satisfied for Weyl groups of types \(E_7 \) and \(E_8 \), we can infer the following:

COROLLARY. If \(G \) is a Chevalley group of type \(C_3(2) \) or \(D_4(2) \), then the property \(\text{Gal}_T(G) \) is satisfied.

1. Throughout, \(\Phi \) is a reduced indecomposable root system, \(\pi = \{r_1, r_2, \ldots, r_l\} \) is the set of fundamental roots of \(\Phi \) such that \(r_1 \) is a short root, and \(W \) is the Weyl group of type \(\Phi \) generated by fundamental reflections \(w_{r_i} \). The alignment of fundamental roots is shown in the following Dynkin's diagram:

We distinguish $c = w_{r_1}w_{r_2} \ldots w_{r_l}$, one of the Coxeter elements.

Proposition 1 (see [4, 5]). Suppose that W is of type distinct from B_l, D_{2k}, or F_4. Then $W = \langle c, w_{r_1} \rangle$.

Proposition 2 (see [6]). Let

$$s_i = w_{r_1}w_{r_{i-1}} \ldots w_{r_{i+1}}(r_i), \quad i = 1, \ldots, l,$$

and let Φ_i be the orbit of the root s_i with respect to the group $\langle c \rangle$. Then the subsets Φ_i intersect pairwise trivially and exhaust all the orbits of $\langle c \rangle$ in Φ.

2. Let C_1, \ldots, C_k $(k \geq 3)$ be conjugacy classes of a finite group G. Denote by $P = P(C_1, \ldots, C_k)$ the set of k-tuples $(g_1, \ldots, g_k) \in C_1 \times \ldots \times C_k$ such that $g_1g_2 \ldots g_k = 1$ and $G = \langle g_1, \ldots, g_k \rangle$. The collection (C_1, \ldots, C_k) is called rigid if P is not empty and G acts transitively (by conjugation) on P.

A conjugacy class C of a group G is said to be rational if each character of G takes a rational value on C.

Proposition 3 (see [2]). Suppose that a finite group G satisfies the following conditions:

1. G has a rigid rational triplet

$$\langle C_a, C_b, C_{b-1} \rangle;$$

2. $Z(G)$ is a direct summand in $N_G((a))$. Then the property $G_{\text{Gal}}(G)$ is satisfied.

Here C_x is a conjugacy class with a representative x, $N_G(A)$ is the normalizer of a subgroup A in a group G, and $Z(G)$ is the center of G.

3. Proof of the theorem. Suppose that the type of W is distinct from B_l, D_{2k}, or F_4 and let C_1, C_2, C_3 be the conjugacy classes of W with representatives w_{r_1}, c, and $c^{-1}w_{r_1}$, respectively. It is well known that all conjugacy classes of a Weyl group are rational (see, e.g., [1]). Therefore, by virtue of Proposition 3, the theorem follows from the following two lemmas.

Lemma 1. The triple (C_1, C_2, C_3) is a rigid triplet of the group W.

Proof. By Proposition 1 we have $W = \langle w_{r_1}, c \rangle$. Let $a_i \in C_i$ and $W = \langle a_1, a_2, a_3 \rangle$. Without loss of generality, we may assume that $a_2 = c$ and $a_1 = w_r$ for some root $r \in \Phi$. It is sufficient to show that $c^i(r) = r_1$ for some $i \in Z$.

By Proposition 2, as representatives of the orbits of the group $\langle c \rangle$ in Φ we can take the following elements:

- $r_1 + \ldots + r_1, r_2 + \ldots + r_1, r_3 + \ldots + r_1$ for $\Phi \neq D_l, E_l$;
- $r_1 + r_3 + \ldots + r_1, r_2 + r_3 + \ldots + r_1, r_3 + \ldots + r_1$ for $\Phi = D_l$;
- $r_1 + \ldots + r_1, r_1 + \ldots + r_1, r_1 + \ldots + r_1, \ldots + r_1$ for $\Phi = E_l$.

So we can assume that r coincides with one of the roots indicated above.

Suppose that r is one of the following:

- $r_1 + \ldots + r_1$, or r_1 for $\Phi = A_l$;