Counterexamples to a Conjecture of Mader about Cycles Through Specified Vertices in n - Edge - Connected Graphs

Andreas Huck1 and Haruko Okamura2

1 Institut für Mathematik, Universität Hannover, Welfengarten 1, W - 3000 Hannover 1, Federal Republic of Germany
2 Faculty of Engineering, Osaka City University, Osaka 588, Japan

Abstract. For each odd $n \geq 3$, we construct n - edge - connected graphs G with the following property: There are two vertices u and v in G such that for every cycle C in G passing through u and v the graph $G - E(C)$ is not $(n - 2)$ - edge - connected. Here $E(C)$ denotes the set of edges of C, and a cycle is allowed to pass through a vertex more than once.

We consider graphs which are finite, undirected, without loops and in which multiple edges are possible. Let $G = (V, E)$ be a graph. $V(G) = V$ and $E(G) = E$ denote the set of the vertices of G and the set of the edges of G respectively. If X, $Y \subseteq V$ and $X \cap Y = \emptyset$, then let $[X, Y]_G$ be the set of all edges of G connecting a vertex of X with a vertex of Y. Moreover let $\delta(G; X, Y) := |[X, Y]_G|$ and $\delta(G; X) := \delta(G; X, V - X)$. When using these notations, we also write x and y instead of X and Y respectively, if $X = \{x\}$ and $Y = \{y\}$ respectively.

Paths and cycles in G are allowed to pass through a vertex more than once, but using an edge more than once is forbidden. G is called n - edge - connected, if for each distinct $x, y \in V$, there are at least n edge - disjoint paths in G connecting x and y.

Mader [1] conjectured that the following statement (\ast) is true for each $n \geq 4$:

(\ast) Let G be an n - edge - connected graph and u, v be vertices of G. Then there exists a cycle C in G passing through u and v such that $G - E(C)$ is $(n - 2)$ - edge - connected.

This statement was proved by Mader [1] for $n = 4$ and by Okamura [3] for each even $n \geq 6$. In this paper for each odd $n \geq 3$, we give counterexamples to (\ast).

Theorem 1. If $n \geq 3$ is odd, then there exists an n - edge - connected graph G of order $2(n + 3)/2$, which contains two vertices u and v of distance three, such that for each cycle C passing through u and v, $G - E(C)$ is not $(n - 2)$ - edge - connected.

In Theorem 1 the distance between u and v is the minimum possible, because Okamura [2] and Mader [1] proved the following: If G is n - edge - connected and
Let \(G = (V, E) \) be a graph. If \(X \subseteq V \) and if \(x \in X \), we let \(G^* = G/X \to x \) be the graph obtained from \(G \) by contracting \(X \) to \(x \). We do this in such a way, that \(V(G^*) = (V - X) \cup \{x\} \) and \([X, y]_G^* = [x, y]_G\) for each \(y \in V - X \). If \(X_1, \ldots, X_k \subseteq V \) are pairwise disjoint and if \(x_i \in X_i \) for each \(i \in \{1, \ldots, k\} \), we define \(G/X_1 \to x_1, \ldots, X_k \to x_k \) inductively by \(G/X_1 \to x_1 \to x_2 \to \cdots \to x_k \).

The following lemma is well known and easily seen to hold:

Lemma 1. Let \(G \) be a graph, \(X \subseteq V(G), x \in X, y \in V - X \) and \(n := \delta(G; X, V - X) \). Moreover let \(G/X \to x \) and \(G/(V - X) \to y \) be \(n \)–edge–connected. Then \(G \) is also \(n \)–edge–connected.

In the following let \(n \geq 3 \) be a fixed odd number and \(\alpha := \frac{n - 1}{2} \). Moreover let \(u \) and \(v \) be two distinct fixed vertices. We call a graph \(G \) admissible, if \(u, v \in V(G) \) and \(\delta(G; x) = n \) for each \(x \in V(G) \) and if \(G \) is \(n \)–edge–connected. A cycle \(C \) in \(G \) is called nice, if \(u, v \in V(C) \) and if \(G - E(C) \) is \((n - 2)\)–edge–connected.

In figures of graphs \(x \leftrightarrow y \) always indicates exactly \(m \) edges connecting \(x \) and \(y \). For each \(l \in \{1, 2, \ldots, \alpha\} \), let \(H_l \) be a graph given by the figure below, i.e. \(V(H_l) = \{u, v, a, b\} \), \(\delta(H_l; u, v) = \delta(H_l; a, b) = \alpha, \delta(H_l; u, a) = \delta(H_l; v, a) = l \) and \(\delta(H_l; u, a) = \delta(H_l; v, b) = \alpha + 1 - l \).

The following lemma is easily seen to hold.