ON AN INITIAL BOUNDARY-VALUE PROBLEM FOR THE EQUATION OF MAGNETOHYDRODYNAMICS WITH THE HALL AND ION-SLIP EFFECTS

G. Mulone and V. A. Solonnikov

Dedicated to N. N. Uraltseva on her jubilee

This paper is concerned with the three-dimensional initial boundary-value problem for the equations of magnetohydrodynamics with additional nonlinear terms stemming from a more general relationship between the electric field and the current density. The problem governs the motion of a viscous incompressible conducting liquid in a bounded container with an ideal conducting surface. The existence of a solution which is close to a certain basic solution is proved. The solution is found in the anisotropic Sobolev spaces $W^{2,1}_p$ with $p > 5/2$. The proof relies on the theory of general parabolic initial boundary-value problems. Bibliography: 16 titles.

§ 1. INTRODUCTION

Motion of a viscous incompressible conducting fluid in a magnetic field is governed by a system consisting of the Navier-Stokes and the Maxwell equations,

$$
\frac{\partial \vec{v}}{\partial t} - \nu \Delta \vec{v} + (\vec{v} \cdot \nabla)\vec{v} - \frac{\mu}{\rho} (\vec{H} \cdot \nabla)\vec{H} + \nabla q = \vec{F}(x, t),
$$

$$\text{div} \vec{v} = 0, \quad \vec{H}_t = -\frac{1}{\mu} \text{rot} \vec{E}, \quad \text{div} \vec{H} = 0,$$

$$\text{rot} \vec{H} + \mu \sigma \beta \text{rot} \vec{H} \times \vec{H} + \mu \sigma \beta_1 \vec{H} \times (\text{rot} \vec{H} \times \vec{H}) = \sigma (\vec{E} + \mu \vec{v} \times \vec{H}).$$

(1.1)

Here \vec{v} is the velocity vector field, \vec{H} and \vec{E} are the magnetic and electrical fields, $q = \frac{\mathcal{E}}{\rho} + \frac{\mu |\vec{H}|^2}{2\rho}$, ρ is the pressure, \vec{F} is the vector field of external forces, and ρ, ν, μ, σ are constant coefficients (density, viscosity, magnetic permeability and electrical conductivity of the liquid). Finally, $\beta_1 = \text{const} \geq 0$ and $\beta = \text{const} \in \mathbb{R}$ (the Hall constant β can be of arbitrary sign [1]). As usual, we have neglected the displacement current. Excluding \vec{E}, we arrive at the system

$$\vec{v}_t - \nu \Delta \vec{v} + (\vec{v} \cdot \nabla)\vec{v} - \frac{\mu}{\rho} (\vec{H} \cdot \nabla)\vec{H} + \nabla q = \vec{F}(x, t),$$

$$\vec{H}_t - \frac{1}{\mu \sigma} \Delta \vec{H} - \text{rot} [\vec{v} \times \vec{H}] - \beta \text{rot} (\vec{H} \times \text{rot} \vec{H}) -$$

$$-\beta_1 \text{rot} [(\vec{H} \times (\vec{H} \times \text{rot} \vec{H})] = 0, \quad \text{div} \vec{v} = 0, \quad \text{div} \vec{H} = 0,$$

(1.2)

which should be completed by initial and boundary conditions. We assume that the liquid is moving in a bounded container whose walls are made of perfectly conducting material, hence, $\vec{H} \cdot \vec{n} = 0$ and $\vec{E}_r = \vec{E} - \vec{n} (\vec{n} \cdot \vec{E}) = 0$ on the boundary. The vector field \vec{E} can be found from the last equation in (1.1), so that the initial and boundary conditions take the form

$$\vec{v}(x, 0) = \vec{v}^{(0)}(x), \quad \vec{H}(x, 0) = \vec{H}^{(0)}(x),$$

$$\vec{v} \big|_{\partial \Omega} = \vec{A}, \quad \vec{H} \cdot \vec{n} \big|_{\partial \Omega} = 0,$$

$$\left\{ \frac{1}{\mu \sigma} \text{rot} \vec{H} - \beta [\vec{H} \times \text{rot} \vec{H}] - \beta_1 ([\vec{H} \times (\vec{H} \times \text{rot} \vec{H})] \right\} \bigg|_{\partial \Omega} = 0.$$

(1.3)

We restrict ourselves with consideration only of this initial boundary-value problem, although the boundary conditions
\[\vec{v}|_{\partial \Omega} = \vec{a}, \quad \vec{H}|_{\partial \Omega} = 0, \]
and
\[\vec{v} \cdot \vec{n}|_{\partial \Omega} = 0, \quad (S(\vec{v})\vec{n})|_{\partial \Omega} = 0, \quad \vec{H}|_{\partial \Omega} = 0, \]
with \(S_{ij} = \frac{\partial n_i}{\partial x_j} + \frac{\partial n_j}{\partial x_i} \), also have a certain physical sense.

In the case \(\beta_1 = \beta = 0 \), problem (1.2), (1.3) was studied in [2, 3]. In [3], a justification of the linearization principle was given not only for the equations of magnetohydrodynamics but also for more general equations of the form \(\frac{d}{dt} + A(t)u + K\vec{u} = f \). Here \(A(t) \) is a linear operator with a positive self-adjoint principal part and \(K \) is a nonlinear operator subordinate to \(A(t) \) in a certain sense. System (1.2) cannot be imbedded into this general framework due to the high order of nonlinear terms that describe the Hall and ion-slip currents. The questions of uniqueness and of stability of solutions of some initial boundary-value problems for Eqs. (1.2) are studied in [4–10], but the existence of a solution of problem (1.2), (1.3), close to a stationary solution, is established only in [8, 9] in the case \(\beta_1 = 0 \) (in [9] it is also required at the investigation of linear and nonlinear evolution problems that the Hall constant \(\beta \) is positive and sufficiently small). The solution is found in the space \(W^{4,2}_2(Q_T) \) which imposes additional restrictions on the compatibility of initial and boundary conditions; there appear compatibility conditions that contain the time derivative of the solution (they are not written explicitly). We mention also [11], where the displacement current is taken into account.

In the present paper, which is a continuation of [12], we also search for a solution of problem (1.2), (1.3) in the form \(\vec{H}(x,t) = \vec{H}_0(x,t) + \vec{h}(x,t), \quad \vec{v}(x,t) = \vec{V}_0(x,t) + \vec{u}(x,t) \), where \(\vec{H}_0 \) and \(\vec{V}_0 \) are certain given divergence-free vector fields. Clearly, \(\vec{u} \) and \(\vec{v} \) should be solutions to the problem
\begin{align*}
\vec{u}_t + A_1(\vec{u}, \vec{q}, \vec{h}) + K_1(\vec{u}, \vec{h}) = \vec{f}, \quad \text{div} \vec{u} = 0, \\
\vec{h}_t + A_2(\vec{h}, \vec{u}) + K_2(\vec{h}, \vec{u}) = \vec{g}, \quad \text{div} \vec{h} = 0, \\
\vec{u}|_{t=0} = \vec{u}_0, \quad \vec{h}|_{t=0} = \vec{h}_0, \quad \vec{u}|_{\partial \Omega} = \vec{a}, \\
\vec{h} \cdot \vec{n}|_{\partial \Omega} = 0, \quad B_\tau(\vec{h}) + K_\tau(\vec{h})|_{\partial \Omega} = \vec{d},
\end{align*}
where
\begin{align*}
A_1(\vec{u}, \vec{q}, \vec{h}) &= -\nu \Delta \vec{u} + (\vec{V}_0 \cdot \nabla) \vec{u} + (\vec{u} \cdot \nabla) \vec{V}_0 - \frac{\mu}{\rho} ((\vec{H}_0 \cdot \nabla) \vec{h} + (\vec{h} \cdot \nabla) \vec{H}_0) + \frac{1}{\rho} \nabla \vec{q}, \\
A_2(\vec{u}, \vec{h}) &= -\frac{1}{\sigma \mu} \text{grad div} \vec{h} + \text{rot} \vec{B}(\vec{h}) - \text{rot} [(\vec{V}_0 \times \vec{h}) + (\vec{u} \times \vec{H}_0)], \\
B(\vec{h}) &= \frac{1}{\sigma \mu} \text{rot} \vec{h} - \beta(\vec{H}_0 \times \text{rot} \vec{h} + \vec{h} \times \text{rot} \vec{H}_0) - \\
&- \beta_1 [\vec{H}_0 \times (\vec{H}_0 \times \text{rot} \vec{h}) + \vec{H}_0 \times (\vec{h} \times \text{rot} \vec{H}_0) + \vec{h} \times (\vec{H}_0 \times \text{rot} \vec{H}_0)], \\
K_1(\vec{u}, \vec{h}) &= (\vec{u} \cdot \nabla) \vec{u} - \frac{\mu}{\rho} (\vec{h} \cdot \nabla) \vec{h}, \\
K_2(\vec{h}, \vec{u}) &= \text{rot} K(\vec{h}) - \text{rot}(\vec{u} \times \vec{h}), \\
K(\vec{h}) &= -\beta(\vec{h} \times \text{rot} \vec{h}) - \beta_1 [(\vec{H}_0 \times (\vec{h} \times \text{rot} \vec{h}) + \vec{h} \times (\vec{H}_0 \times \text{rot} \vec{H}_0)] - \beta_1 (\vec{h} \times (\vec{h} \times \text{rot} \vec{h})).
\end{align*}
Finally, \(B_\tau(\vec{h}) \) and \(K_\tau(\vec{h}) \) in the boundary conditions are the tangential components of \(B(\vec{h}) \) and \(K(\vec{h}) \), respectively.

The main result of the paper is a theorem on the solvability of problem (1.4) in the anisotropic Sobolev spaces \(W^{2,1}_p(Q_T) \) \((Q_T = \Omega \times (0,T), p > 5/2)\) with the norm
\[\|u\|_{W^{2,1}_p(Q_T)} = \left(\int_0^T \|u_t\|_{L^p_1(\Omega)}^p + \|u\|_{W^2_2(\Omega)}^p \right)^{1/p}. \]