electrodes had resistances in the range of 50–100 MΩ and recorded larger resting and secretory potentials than the other. The methods of recording membrane potential have been described previously.3,4

The experiments were performed in the following manner. An acinus was impaled with a Procion electrode and, provided the resting potential did not decline, the salivary duct nerves were stimulated to elicit a secretory potential. Procion was injected into the acinus by passing hyperpolarizing current pulses (10–20 nA, 100 msec) at 5 Hz through the microelectrode. Procion injection was continued for periods of 5 min, interrupted for about 1 min solely to monitor resting and secretory potentials. The microelectrode remained inside the cell for up to 30 min as judged by these criteria. The salivary gland was removed from the chamber about 30 min after the end of the experiment and fixed in 10% formalin. After wax embedding, 10 µm sections were prepared and mounted in Gurr's Uvinert mountant for examination by fluorescence microscopy and then photographed. The cover slips were floated off the slides by prolonged immersion in xylen and the tissue sections stained with Ehrlich's Haematoxylin and Eosin and finally mounted in Gurr's XAM for examination by light microscopy.

Results and discussion. In 11 experiments it was demonstrated that the site of microelectrode recording of secretory potentials was the interior of gland cells. The Figure shows representative results from 2 experiments where responses were obtained from each of the two cell types present in the acinus. Examination with light microscopy (d) established that the cells stained with Procion under fluorescence microscopy (a) were peripheral and central cells. In sections stained with Haematoxylin and Eosin the peripheral cells appear pink, are generally pyramidal in shape and show a prominent brush border lining the lumen of an intracellular ductule. In Figure a) (peripheral cell) the lumen of this ductule can be seen to be distended and free of Procion Yellow. Some of the dye appears to have spread from the peripheral cell across its apical margins to neighbouring central cells. The central cells stain purple to varying degrees, show the presence of large granules and do not contain an intracellular lining the lumen of an intracellular ductule since they discharge their secretion into the central lumen of the acinus. It can be seen in Figure a) (central cell) that Procion Yellow has been deposited preferentially in the nucleus, although this may be fortuitous. In 9 other experiments it was found that 3 of the cells were peripheral and 6 were central. Thus it seems that responses can be recorded from either kind of cell and therefore, in the light of the previous evidence, from any cell in an acinus. It seems unlikely that each cell has its own innervation in view of the sparse number of nerve fibres running to acini. Although this possibility cannot be excluded by the present experiments, it seems more probable that acinar cells, even of different kinds, are coupled electrically. It might be that a secretory potential is evoked in a single cell, or perhaps a few cells, and spreads electrotonically. Electrophysiological evidence for electrical coupling in this gland has already been reported and is consistent with the presence of septate desmosomes between acinar cells. Also consistent with this suggestion is the observation that in the experiments described above (peripheral cell, a), Procion Yellow appears able to spread from one cell to another; however, further experiments are required to investigate this point.

Summary. Secretory potentials evoked by nerve stimulation have been recorded from both types of cell (peripheral and central) present in the acini of cockroach salivary glands.

C. R. House

Department of Veterinary Physiology, University of Edinburgh, Edinburgh EH9 1QH (Scotland), 28th February 1975.

A Preliminary Report on the Fine Structure of Tripneustes esculentus Eggs

The past decade has given us much information about the structural organization of unfertilized, fertilized and centrifuged sea urchin eggs4–4, but the methods of fixation employed in those studies resulted mostly in general coarse preservation of cytoplasmic organelles.

It is essentially because of the importance of the sea urchin egg in the study of embryology that work involving modern fixation methods of this material for electron microscopy observation has been in progress in our laboratory for some time. Our aim was to arrive at a suitable fixation procedure that enable us to make more meaningful interpretations of the ultrastructure of the eggs in normal or experimental development.

The purpose of this communication is to report the best preservation for eggs of the sea urchin Tripneustes esculentus so far obtained through extensive screening and modification of various methods.

Methodology. Sea urchins of the species Tripneustes esculentus and sea water were obtained from the Carribean Research Centre, Martinique, and kept at 22°C for a few hours. The eggs, obtained by injection of 0.53 M KCl in the vicinity of the oral region, were gently filtered through

---

2. Acknowledgments. I am indebted to F. S. Robertson for histological work and Dr. B. L. Giesborg for comments on this paper. I also wish to thank I.C.I. for a gift of Procion Yellow.
Fig. 1. Low power view of an unfertilized sea urchin egg (*Tripartites esculentus*) fixed for 5 min in a mixture of paraformaldehyde-glutaraldehyde and sea water at pH 7.4. Y, Yolk granule; P, pigment granule and CG, cortical granule. ×10,000. Further details in text.

Fig. 2. Internal region of a sea urchin egg fixed as for Figure 1 and showing a rosette-like structure composed of mitochondria (M) surrounding a lipid granule (L). ×24,000.