FRACTAL SETS DEFINED BY FINITE TRANSUDCERS

L. P. Lisovik

The notion of fractal set was introduced in 1919 by F. Hausdorff, whose ideas were further developed in [1-3]. The theory of fractal sets has numerous applications [1]. Many sets on the real line or in the n-dimensional Euclidean space are fractal sets. Such are the Cantor set and related sets [3] (fractal sets associated with the Q-S-representation are also described in [3]).

In this article we consider finite R[0, 1]-transducers and investigate the conditions under which the sets generated by these transducers are fractal. An R[0, 1]-transducer is a particular form of R-transducer [4]. An arbitrary R-transducer A defines the real function \(f_A(x) \) by sequentially processing any input infinite binary representation \(x \) of the real number \(x \) into an output binary representation \(y \) so that \(f_A(x) = y \). The output superword \(y \) may contain the symbols 2 and \(\overline{2} \) (minus 2), which denote overflow. An arbitrary R-transducer A = (K, H, q0) has the state set \(K \), the instruction set \(H \), and the initial state \(q_0 \). The instruction \(pa \rightarrow bq \) defines the following action: the R-transducer reading the word \(a \) from the input tape when in state \(p \) adds the word \(b \) to the output tape and goes to state \(q \). The operation starts in the initial state \(q_0 \) when the output tape is empty and the input tape contains the input infinite binary representation of \(x \). Sequential processing of \(x \) is performed using the instructions of the R-transducer A. For an R[0, 1]-transducer A the first executed instruction has the form \(q_0 \, \overline{0} \rightarrow 0 \, \overline{0} \, q_1 \), where the symbol \(\overline{V} \) stands for the decimal point. In general, any real function can be defined by an R-transducer [4]. An R[\(m \)-transducer, unlike an R-transducer, has \(m \) input tapes and \(n \) output tapes, where \(m, n \geq 1 \). Finite R[1, 2]-transducers constructed in [5] generate analogues of the Koch snowflake and the Sierpinski napkin. These are well-known objects of fractal geometry. A finite R-transducer can be used to define a continuous nowhere differentiable function [5, 6]. Let \(Dom(f) \) be the domain of definition of the function \(f \). If \(A \) is an R[0, 1]-transducer, then it defines the set \(\{f_A(x) : x \in [0, 1] \} \).

The main result of our study can be stated as follows: if \(A \) is a finite R-transducer and the set \(Dom(f_A) \) is a nowhere dense continuum, then \(f_A \) is a fractal set in the narrow sense. The latter implies that its Hausdorff–Bezikovich dimension is a fractional number. This result is a corollary of a particular case for the R[0, 1]-transducer. We have also derived some natural generalizations of this result (e.g., for the n-dimensional Euclidean space with \(n \geq 2 \)). We have shown that the set \(Dom(f_A) \) is of measure 1 if it is everywhere dense in \([0, 1] \) and \(A \) is a finite R[0, 1]-transducer.

The Hausdorff–Bezikovich dimension, the entropy dimension, and the \(\alpha \)-dimensional Hausdorff measure are defined in [3]. In the usual way, \(V^* \) is the set of all words in the alphabet V (the set of all finite sequences of elements of the set V), including the empty word \(e \), \(V^+ = V^* \setminus \{e\} \) is the length of the word \(v \), \(V^w \) is the set of all superwords in the alphabet V (the set of all infinite sequences of elements of the set V). We use some definitions from [4, 5]. In particular, the real number defined by the binary representation \(\alpha = 0\overline{\alpha} \), where \(\beta \in \{0, 1\}^\mathbb{N} \), is denoted by \(\overline{\alpha} \) or \(\|\alpha\| \). The symbol \(\overline{V} \) stands for the decimal point.

The R-transducer \(A = (A, H, q_0) \) is called an R[0, 1]-transducer if \(K = \{q_0, q_1, \ldots\} \) is a finite or a countable set, the set \(H \) contains the instruction \(q_0 \, \overline{0} \rightarrow 0 \, \overline{0} \, q_1 \), and for any number \(i \geq 1 \) and any symbol \(a \in \{0, 1\} \) there is an instruction of the form \(qa \rightarrow bq \), where \(j \geq 1 \), \(b \) is a symbol \(0, 1 \) or the empty word \(e \). The R[0, 1]-transducer A defines a partial real function \(f_A : [0, 1) \rightarrow [0, 1] \). The R-transducers A and B are called equivalent if \(f_A = f_B \) [4]. Dom(\(f_A \)) is the domain of definition of the partial real function \(f_A \).

The R[0, 1]-transducer A = (K, H, q0) is called normalized if it satisfies the following conditions:
- finite or countable index sets I and J are given, which include 0, and \(K = \{q_0\} \cup \{q_i : i \in I\} \cup \{q_i^* : i \in J\} \);
- the set \(H \) contains the instruction \(q_0 \, \overline{0} \rightarrow 0 \, \overline{0} \, q_0' \);
- for every state \(q \in K \setminus \{q_0\} \) and any symbol \(a \in \{0, 1\} \) there is an instruction with the left-hand part \(qa \rightarrow q_i^* \) or an instruction of the form \(qa \rightarrow bq_i^* \), where \(b \in \{0, 1\} \).

d) for every state $g \in K$, there are words α and β such that the macroinstruction $q_00\alpha \rightarrow \beta g$ is executable.

LEMMA 1. For every $R_{(0,1)}$-transducer A there exists an equivalent normalized $R_{(0,1)}$-transducer B.

The proof is obvious.

The $R_{(0,1)}$-transducer A is called finite if its state set is finite.

We now give a number of definitions that are used in Theorem 1 and the following lemmas. Let $A = (K, H, q_00)$ be an arbitrary fixed $R_{(0,1)}$-transducer.

For any state $p \in K \setminus \{q_00\}$, we denote by A^p the $R_{(0,1)}$-transducer obtained from A by replacing the instruction $q_00 0 \lor 0 \lor q1_i$ with the instruction $q_{00} 0 \lor 0 \lor \lor p$. The state p is of type 1, 2, 3, or 4 if the set $\text{Dom}(f_{Ap})$ is respectively empty, finite, countable, or is a continuum.

The notation $q u \rightarrow \rightarrow p$ implies that the transducer A reading the word u in state q goes to state p. If, moreover, at least one of the symbols 0 or 1 is delivered at the output, we write $q u \rightarrow \rightarrow p$. The state p is called self-branching in h steps if there exist different words u_1, u_2 of length h such that $p u_1 \rightarrow \rightarrow p, i = 1, 2$.

$A \Sigma$-labeling is any function of the form $\mu : \{0, 1\}^* \rightarrow \Sigma$. Such functions are also called labelings or labeled trees. Here $\Sigma = \{0, 1, e\}$, and the set $\{0, 1\}^*$ consisting of all words in the alphabet $\{0, 1\}$, including the empty word e, is the set of nodes of a complete binary infinite tree D^1. The nodes u, v are joined by an edge if $v \in \{u0, ul\}$ or $u \in \{v0, vl\}$. The node e is the root of the tree.

The $R_{(0,1)}$-transducer A defines two labelings $\mu_1 : \{0, 1\}^* \rightarrow K$ and $\mu_2 : \{0, 1\}^* \rightarrow \{0, 1, e\}$ in the following way: $\mu_1(e) = q_1, \mu_2(e) = e, \mu_1(v) = p, if q_00 \rightarrow \rightarrow p, \mu_2(v) = b$, if reading the word v in state q_1 the transducer A executes an instruction of the form $q_{00} \rightarrow \rightarrow bq_j$ as the last instruction and $v \neq e$.

Let n be any natural number. Then the set $S(n) = \{p | q_00 \rightarrow \rightarrow p for some word u of length $n\}$ is called the n-trace.

We assume that the pair (m, n) has the characteristic $\Pi(m, n)$. There obviously exist finitely many different characteristics. Let us assign a color to each characteristic, saying that the pair (m, n) is painted the color $\Pi(m, n)$. This corresponds to the terminology used in Ramsey's theory [7].

LEMMA 2. There exists an infinite sequence of natural numbers $n_1 < n_2 < ...$ such that all pairs (n_i, n_j) with $i < j$ are painted the same color $\Pi = \Pi(n_1, n_2)$.

This lemma is a variant of the Ramsey theorem.

THEOREM 1. Assume that the $R_{(0,1)}$-transducer A has a finite state set and $\text{Dom}(f_{Ap})$ is a continuum nowhere dense in $[0, 1]$. Then $\text{Dom}(f_{Ap})$ is a fractal set in the narrow sense.

Proof. Let $A = (K, H, q_00), E = \text{Dom}(f_{Ap})$, and $H(E)$ is the α-dimensional Hausdorff measure of the set E. Below we give a number $0 < \alpha_0 < 1$ such that $H_{\alpha}(E) = 0$ for $\alpha > \alpha_0$ and $H_{\alpha}(E) = \infty$ for $0 < \alpha < \alpha_0$. Hence it follows that $H_\alpha(E) = 0$ for $\alpha = 1$, and therefore the set E is of Lebesgue measure 0. The topological dimension of the set E is also 0, because it is nowhere dense. The Hausdorff–Bezikovich dimension of the set E is α_0. We thus find that E is a fractal set in the narrow sense. The proof relies on Lemmas 3-15.

Suppose that in accordance with Lemma 2 we have chosen the sequence of natural numbers $n_1 < n_2 < ...$ such that all the pairs (n_i, n_j) with $i < j$ have the same characteristic $\Pi = \Pi(n_1, n_2)$. Here $\Theta = 0$, because the set $\text{Dom}(f_{Ap})$ is nowhere dense in $[0, 1]$. The sets S', S_1, and S_{11} are called respectively the sets of branching, self-branching, and strongly self-branching states. The set S' is nonempty, because $\text{Dom}(f_{Ap})$ is a continuum. The set S_{11} is also nonempty by the following lemma.

LEMMA 3. For every state $p \in S'$ there exists a state $q \in S_{11}$ such that $(p, q) \in Y$.