Interpolating sequences in the ball of \mathbb{C}^n

Éric Amar

Abstract. Let B be the unit ball of \mathbb{C}^n, I give necessary conditions on a sequence S of points in B to be $H^\infty(B)$ interpolating in term of a \mathbb{C}^n valued holomorphic function zero on S (a substitute for the interpolating Blaschke product).

These conditions are sufficient to prove that the sequence S is interpolating for $\cap_{p>1} H^p(B)$ and is also interpolating for $H^p(B)$ for $1 \leq p < \infty$.

1. Introduction

Let B be the unit ball of \mathbb{C}^n and $S:=\{a_j\}_{j \in \mathbb{N}}$ be a sequence of points in B. We shall say that S is $H\infty(B)$ interpolating if for every $\lambda:=\{\lambda_j\}_{j \in \mathbb{N}} \in \ell^\infty(\mathbb{N})$, there exists $f \in H^\infty(B)$ such that $f(a_j)=\lambda_j$ for all $j \in \mathbb{N}$.

We shall say that S is $\cap_{p>1} H^p(B)$ interpolating if for every $\lambda:=\{\lambda_j\}_{j \in \mathbb{N}} \in \ell^\infty(\mathbb{N})$, there exist $f \in \cap_{p>1} H^p(B)$ such that $f(a_j)=\lambda_j$ for all $j \in \mathbb{N}$.

Finally we shall say that S is $H^p(B)$ interpolating if for every $\lambda:=\{\lambda_j\}_{j \in \mathbb{N}}$ with $\|\lambda\|_p:=\sum_{j=0}^{\infty} |\lambda_j|^p(1-|a_j|^2)^n < +\infty$, there exists $f \in H^p(B)$ such that $f(a_j)=\lambda_j$ for all $j \in \mathbb{N}$.

If S is $H^\infty(B)$ interpolating then the closed graph theorem gives the existence of a constant C such that for any bounded sequence λ there exists a function $f \in H^\infty(B)$ such that for all $j \in \mathbb{N}$, $f(a_j)=\lambda_j$ with the control $\|f\|_\infty \leq C\|\lambda\|_\infty$. The smallest such C is called the interpolating constant of S.

The $H^\infty(B)$ interpolating sequences are precisely characterized for $n=1$ in the theorem of L. Carleson [8] and they are the same as the $H^p(B)$ interpolating sequences in that case [11]. Such a sequence is the set of zeros of an interpolating Blaschke product.

Let for $a \in \partial B$ and $h>0$, $Q:=Q(a,h):=\{\eta \in B ||1-\bar{a}\eta|<h\}$ be a pseudoball. We say that a measure μ on B is a Carleson measure if there exist $C>0$ such that

$$|\mu|(Q(a,h)) \leq Ch^n$$

for all $a \in \partial B$ and $h > 0$.

In the case \(n > 1 \), N. Varopoulos [13], proved that if \(S \) is interpolating for \(H^\infty (B) \) then the measure \(\mu = \sum_{j=1}^{\infty} \delta_{a_j} (1-|a_j|^2)^n \) is Carleson.

In [2], I proved that if \(S \) is \(H^2 \) interpolating, then again the measure \(\mu = \sum_{j=0}^{\infty} \delta_{a_j} (1-|a_j|^2)^n \) is Carleson and in [1], we proved that there is a sequence \(S \) in the ball of \(C^2 \) which is \(H^2 \) interpolating but not \(H^\infty \) interpolating, which means that the Varopoulos' condition is not sufficient for \(H^\infty \) interpolation.

On the other hand B. Berndtsson [7] proved that if the product of the Gleason distances of the points of \(S \) is bounded below, the sequence \(S \) is \(H^\infty \) interpolating. He also showed that this condition, which characterizes interpolating sequences when \(n = 1 \), is not necessary for \(n > 1 \).

The aim of this work is to give a generalization of the interpolating Blaschke product in the case of the ball in \(C^n \).

Let \(B \) be a \(C^n \) valued bounded holomorphic function in \(B \).

Definition 1.1. Let \(a \in B \), and \(\Phi_a \) be a biholomorphic map exchanging \(a \) and 0. We shall say that \(B \) is equivalent to \(\Phi_a \) near \(a \) if \(B = M_a \cdot \Phi_a \) with the matrix \(M_a \) invertible near \(a \). More precisely, we require that there is a \(\delta > 0 \) and \(C_B > 0 \) such that \(M_a \) is invertible in \(|\Phi_a| < \delta \) and, with \(A_a := M_a^{-1} \), \(|A_a| < C_B \) in \(|\Phi_a| < \delta \).

Now we can give the definition of an interpolating function for \(S \).

Definition 1.2. Let \(S := \{a_j\}_{j \in \mathbb{N}} \) be a sequence of points in \(B \) and \(B \) be a \(C^n \) valued bounded holomorphic function in \(B \). We say that \(B \) is interpolating for \(S \) if \(B \) is equivalent to \(\Phi_j := \Phi_{a_j} \) near \(a_j \) uniformly with respect to \(a_j \), i.e. the constants \(\delta \) and \(C_B \) are independent of \(a_j \).

Of course, if \(B \) is interpolating for \(S \) then it is zero on \(S \).

This is a characterization of the interpolating Blaschke products up to multiplication by a unit in \(H^\infty (D) \), if we add that \(S \) are the only zeros of \(B \).

The fact that this is a "possible" generalization in several variables is supported by the following theorems.

Theorem 1.3. Let \(B \) be the unit ball of \(C^n \), if the sequence \(S := \{a_j \in \mathbb{B}\}_{j \in \mathbb{N}} \) is interpolating for \(H^\infty (B) \) then there is an interpolating function \(B \) for \(S \).

Theorem 1.4. Let \(B \) be the unit ball of \(C^2 \), if there is an interpolating function \(B \) for the sequence \(S \), then the sequence \(S \) is \(\bigcap_{p > 1} H^p (B) \) interpolating.

Theorem 1.5. Let \(B \) be the unit ball of \(C^2 \), if there is an interpolating function \(B \) for the sequence \(S \), then the sequence \(S \) is \(H^p (B) \) interpolating for \(1 \leq p < \infty \).

The sufficient results are stated and proved in \(C^2 \). No doubt they are true in \(C^n \), but at the price of non-trivial technical new results.

I want to thank B. Berndtsson for giving me simpler proofs of some lemmas.