GYROMAGNETIC FACTOR OF THE 9^+, 3034 keV STATE IN 66Ga

T. Bădică, V. Cojocaru, D. Pantelică and I. Popescu
Institute of Physics and Nuclear Engineering, P.O. Box MG6, Bucharest, Romania
and
R. Ion-Mihai
Faculty of Physics, Bucharest University, Bucharest, Romania

Received 19 February 1987

The g-factor of the 9^+, 3034 keV state in 66Ga has been found to be $g = 0.47 \pm 0.10$ by means of the integral perturbed angular distribution in an implanted source. The excited states were populated by the reaction 56Fe(12C, pn)66Ga at $E_C = 45$ MeV.

1. Introduction

Excited states in the odd-odd 66Ga nucleus have been studied using both the 66Ge disintegration [1–3] and nuclear reactions [4–6]. Morand et al. [6], using the 64Zn(α, pn)66Ga reaction, have presented a level scheme of 66Ga up to 5109 keV in excitation and spins up to 13.

In the present paper, the g-factor of the 9^+, 3034 keV state in 66Ga was measured.

2. Experimental procedure and results

The $g(9^+, 3034$ keV, 66Ga) factor was measured by observing the integral rotation of the angular distribution pattern by the Larmor precession of the nuclei in the internal field of a magnetized ferromagnetic medium.

For the production of 66Ga in high excited states, the most useful reaction proved to be 56Fe(12C, pn)66Ga since (i) after the nuclear reaction, the residual excited gallium nucleus is implanted in iron, and (ii) the (2 pn) exit channel, being an important competing process, the resulting 65Zn was used for the verification of the experimental method. Indeed, the well-known value of the g-factor of the $9/2^+$, 1066 keV state in 65Zn [7] can be compared with the value measured simultaneously in this work.
Fig. 1. Rotation of the angular distribution pattern for 201 (a) and 390 (b) keV transitions deexciting $9/2^+$, 1066 keV and 9^+, 3034 keV states in 68Zn and 66Ga, respectively. The curves are computer fits to the experimental points.