ANISOTROPIC MAGNETIC PROPERTIES OF GADOLINIUM

O. HARTMANN 1, R. WÄPPLING 1, E. KARLSSON 1, G.M. KALVIUS 2, L. ASCH 2,3, F.J. LITTERST 2,4, K. AGGARWAL 2, K.H. MÜNCH 2, F.N. GYGAX 5 and A. SCHENCK 5

1 Institute of Physics, University of Uppsala, S-75121 Uppsala, Sweden
2 Physik Department, Technische Universität München, D-8046 Garching, Germany
3 Sektion Physik, Universität München, D-8000 München, Germany
4 Inst. f. Metallphysik, Technische Universität Braunschweig, D-3300 Braunschweig, Germany
5 Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland

We report measurements on a single crystal sphere of hexagonal Gd metal. These were carried out as an addition to the high pressure studies on ferromagnetic Gd [1]. Data were taken slightly above and below the Curie temperature ($T_C = 293$ K) for two different crystalline directions (c-axis parallel and perpendicular to the μ-beam) with ≈ 90 MeV/c muons at the μE4 beamline of PSI where the muon spins were polarized parallel to the beam.

The spontaneous muon spin rotation frequency below T_C has been observed previously in polycrystalline material (e.g. [2]). As normally expected, our single crystal data (fig. 1) show no dependence of the frequency on sample orientation and are in general accordance with the temperature variation of the μSR frequency in the ferromagnetic regime as reported in [2]. The complicated temperature dependence has been explained by the interplay between contact and dipolar field. The latter changes because the direction of magnetization starts to

![Fig. 1. Temperature dependence of the muon spin rotation frequency in a single crystal sphere of Gd metal below T_C.](https://example.com/figure1.png)
turn out of the hexagonal c-axis near 230 K. The maximum turning angle of \(\Theta = 60^\circ \) is reached at 200 K. The magnetization then slowly turns back to \(\Theta = 30^\circ \) between 200 K and 50 K. If a single crystal sample is used, as in the present experiment, the variation of spin re-orientation angle is reflected directly in the temperature dependence of the magnitude of initial anisotropy of \(\mu \)SR spectra taken for a fixed orientation of the crystalline axis. Fig. 2 presents the result of such a measurement with the c-axis parallel to the beam. These data show that the initial increase of spin turning angle is much steeper than anticipated from the previous \(\mu \)SR measurements [2] or from neutron scattering results [3]. We could also resolve finer details of the temperature variation in damping

Fig. 2. Temperature dependence of initial anisotropy for c\textparallel beam, i.e. to the initial muon polarization.

Fig. 3. Temperature dependence of damping rate in ferromagnetic Gd. The two orientations gave the same result.