On the basis of theoretical and experimental investigations, criteria have been established for topographic similitude of waterway scours, and scale factors obtained for translating laboratory data to full-scale conditions [1, 2].

As the criteria, use has been made of kinetic parameters and \(F_{r*} d = u^* \frac{d}{g} \) (where \(u^* \) is the dynamic velocity, and \(d \) is the diameter of the material forming the waterway bed). The scale effect, which occurs both with geometric and distorted models, has also been established; this effect is taken into account by the dimensionless factors

\[
M_f = \frac{k_f}{k_m} \quad \text{and} \quad M_x = \frac{x_f}{x_m}.
\]

The indices \(f \) and \(m \) denote the respective characteristics for the full-scale and model conditions. The flow parameter \(k \) is related to \(Re_{r*} \Delta = \frac{u^* \Delta}{\nu} \) (where \(\Delta \) is the linear characteristic of roughness, and \(\nu \) is the kinematic coefficient of viscosity) by the expression

\[
k = \frac{k_{cr, \min}}{R e_{r*} \Delta},
\]

where \(k_{cr, \min} = 0.693 \).

The kinematic turbulence characteristic \(x \) is related to the relative boundary-layer thickness \(h/\delta \) by an expression such as [3]

\[
x = \frac{\delta}{k - \delta},
\]

Full-scale investigations by the Moscow Institute of Railroad Transport Engineers (MIIT), carried out on the Amudar'ya River and canals in natural waterways, showed that the magnitude of \(x \) characterizes the phases of the motion of deposits (corrugation, ridge, etc.), and the effect of turbidity on the hydraulic flow resistance [3].

When modeling nonscouring waterways it is possible that \(x_f = x_m \) \((M_x = 1)\); but to achieve topographic similitude in erodible waterways, \(x_f = x_m \) \((M_x = 1)\).

In order to substantiate the possibility of a distorted modeling of scour at hydraulic structures, the variation of parameter \(k \) with Chezy's dimensionless coefficient \(C/\sqrt{g} \) (Fig. 1), plotted from laboratory tests, is presented. This shows that there is a threshold value of \(k_{\min} \), which characterizes the initial period of topographic change in an erodible waterway (the crest point). With \(k < k_{\min} \), the deposits are not moved; with \(k > k_{\min} \), different phases of motion are observed [3].

From an analysis based on the relationship in Fig. 1, it is possible to write the expression

\[
k_{\min} = \frac{k_{\max}}{\exp(x_{cr} \left(\frac{C}{\sqrt{g}} \right))},
\]

where \(k_{\max} \approx 2.83 \), and \(k_{cr} \approx 0.08-0.10 \).

The supplementary condition for similitude, for both the geometric \((M_I = M_B = M_H)\) and distorted

TABLE 1. Comparison of the Formulas of Different Authors, for Translating the Depth of a Local Scour Δh_m to Full-Scale Conditions, on the Basis of the General Expressions Given by Eqs. (8) and (9) in the Form $M_{\Delta h} = M_{\Delta h} \cdot M_{\mathrm{tr}} \cdot M_{\mathrm{t}} \cdot M_{\Delta h}$

<table>
<thead>
<tr>
<th>Author</th>
<th>z_1</th>
<th>z_2</th>
<th>z_3</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>O. Maggiolo and J. Borghi [9]</td>
<td>2</td>
<td></td>
<td>1.5</td>
<td>Scales M_p, M_k, and M_x are not taken into account.</td>
</tr>
<tr>
<td>S. A. Sarsekeev [6]</td>
<td>1.33</td>
<td>0.33</td>
<td>0.33</td>
<td>A supplementary scale is introduced to indicate the degree of nonhomogeneity of the erodible material, but M_k and M_x are not taken into account.</td>
</tr>
<tr>
<td>B. I. Studenichnikov [7]</td>
<td>1.2</td>
<td></td>
<td>0.2</td>
<td>Scales M_p, M_k, and M_x are not taken into account.</td>
</tr>
<tr>
<td>N. N. Surova [8]</td>
<td>1.12-1.29</td>
<td>-</td>
<td>0.25-0.5</td>
<td>Scales M_p, M_k, and M_x are not taken into account.</td>
</tr>
<tr>
<td>V. S. Altunin [1, 2]</td>
<td>1.25-1.5</td>
<td>0.25-0.5</td>
<td>0.25-0.5</td>
<td>M_k and M_x take into account the scale effect; $z_4 = z_5 = 3-4$.</td>
</tr>
</tbody>
</table>

For an erodible waterway, with $v \leq (1.5-3) v_0$ (where v_0 is the nonscouring velocity) and $h/\delta \leq 15$, the time scale of topographic changes will be given by the expression

$$M_{\mathrm{tr}}' = M_{\mathrm{tr}} \cdot M_{\Delta h}^{1.5} M_{\mathrm{t}}^{1.5} M_{\mathrm{d}}^{0.5},$$

where $M_{\mathrm{tr}} = M_1 / (M_1)^{0.5}$ is the time scale which takes into account the flow velocity according to Froude; but with an increase in flow velocity to $v \geq (2.3$ to $3.3) v_0$ and $h/\delta > 15$,

$$M_{\mathrm{tr}}'' = M_{\mathrm{tr}} \cdot M_{\Delta h}^{1.5} M_{\mathrm{t}}^{0.5} M_{\mathrm{d}}^{1.5}.$$