Axiomatics of Newtonian Cosmology.

by RUDOLF KURTH (Atlanta, Georgia, U.S.A.)

Summary. - Four axioms are assumed which, essentially, state the existence of a frequency function, a qualitative law of gravitation, the conservation of mass (or probability), Newton's law of motion and the local homogeneity of the Universe (§ 2). Theorems I and II yield a complete survey over all the universes which satisfy these axioms and an additional regularity hypothesis (§ 3). Some kinematical and thermodynamical features of these universes are discussed in § 4.

§ 1 - Introduction.

Cosmology based on Newtonian dynamics encounters the difficulty that Newton's law of gravitation and the «World Postulate» («Cosmological Principle») are incompatible. According to this postulate the mass-density is supposed to be independent of the position vector \(x\) (in the euclidean 3-space). Therefore the gravitational potential, \(V(x, t)\) (where \(t\) denotes the time variable), should be independent of \(x\) also. The potential \(V(x, t)\) and the mass-density \(\varphi(x | t)\), however, are related by Poisson's equation

\[
\Delta V(x, t) = 4\pi G \varphi(x | t)
\]

(\(\Delta\) is the Laplace operator and \(G\) is the constant of gravitation) — which implies that \(V(x, t)\) is a non-constant function of \(x\). (Cf. [5], [8], [9]).

This inconsistency could be removed, for example, by the following modification of Poisson's law:

\[
\Delta V(x, t) = 4\pi G \left[\varphi(x | t) - \bar{\varphi}(t) \right]
\]

where \(\bar{\varphi}(t)\) is the «mean density of the universe at the time \(t\) ». It admits universes of which both the mass-density \(\varphi(x | t)\) and the gravitational potential \(V(x, t)\) are independent of the position \(x\). In such a universe the mass-elements move according to Galileo's law of inertia.

It is, however, by no means necessary to specify the modified law of gravitation; instead, it is sufficient to postulate that the gravitational force is uniquely determined by the mass-distribution of the universe. Then a mass-density which is independent of the position \(x\) implies a gravitational potential independent of \(x\). It is the purpose of this note to discuss the consequences of such a qualitative law of gravitation and a strictly local world postulate.
§ 2. - Axioms.

The term «universe» is taken as an undefined primitive notion. Its properties will formally be described by a number of definitions and axioms. The following spaces are assigned to it:

(i) the «real space», \(X \), i.e., the set of all «position vectors» \(x \). «Vector» means «column vector». The number of dimensions, \(n \), of \(X \) is not specified since nearly all results are independent of the particular value of \(n \);

(ii) the associate «velocity space» \(U \), i.e., the set of all «velocity vectors» \(u \); both \(X \) and \(U \) are \(n \)-dimensional vector spaces;

(iii) the «phase space» \(\Gamma = U \times X \);

(iv) the «time-axis» \(T \), i.e., the set of all real numbers \(t \);

(v) \(T' \), an open interval of the time axis which contains the time zero, \(t = 0 \);

(vi) the cartesian products \(\Gamma \times T \) and \(\Gamma \times T' \).

To any universe a «frequency function» \(f(u, x | t) \) is assigned which is defined on \(\Gamma \times T' \). One intuitive interpretation of it reads: let \(M \) be any measurable bounded subset of \(\Gamma \); then

\[
\int_{M} f(u, x | t) du dx
\]

is the mass contained in \(M \) at the time \(t \). Thus a universe is pictured by a continuous material substratum which fills the phase space and has the mass-density \(f(u, x | t) \) in \(\Gamma \times T' \).

Axiom I. The frequency function, \(f(u, x | t) \), of a universe is defined and non-negative on \(\Gamma \times T' \), and is positive for at least one value of \((u, x) \) and \(t = 0 \). It has continuous derivatives of first order with respect to the components of \((u, x, t) \) everywhere in \(\Gamma \times T' \). The moments of the orders 0, 1 and 2,

\[
\int_{\Gamma} f(u, x | t) \, du ,
\int_{\Gamma} uf(u, x | t) \, du ,
\int_{\Gamma} u_i u_j f(u, x | t) \, du ,
\]

\(i \leq t, j \leq n \).