The existence of non-degenerate functions on a compact differentiable m-manifold M.

by MARSTON MORSE (a Princeton, N. J.)

To Giovanni Sansone on his 70th birth day.

Summary. - Let M be a compact differentiable m-manifold of class C^m in E_n, $n = 2m + 1$. Let $x = (x_1, ..., x_n)$ represent a point in E_n. The union of the direction e on the direction sphere S_{n-1} in E_n such that the scalar product $e \cdot x$ defines a non-degenerate function on M is an open subset of S_{n-1} whose complement ω has a Lebesgue measure zero on S_{n-1}. When M is non-compact ω can be everywhere dense on S_{n-1}, but still has Lebesgue measure zero.

§ 1. Introduction. - Let M be a compact m-manifold ($m > 0$) with a differentiable structure of class C^∞. Cf. Ref [1] for definitions. Let

$$(1.1) \quad (u) \rightarrow A(u): U \rightarrow X$$

be a (1.1) mapping of an open subset U of a euclidean m-space of coordinates (u) onto an open subset X of M such that A is compatible with the C^∞-differentiable structure of M given with M. Let f be a real-valued function on M of class C^∞, with values $f(p)$ for $p \in M$. For $(u) \in U$ set

$$(1.2) \quad (f(p)|p = A(u)) = \varphi(u).$$

The critical points of f in X are by definition the images $A(u)$ of the critical points (u) of $\varphi(u)$. Any such critical point is termed non-degenerate if and only if the Hessian of φ at the critical point (u) does not vanish. The condition that a point $p \in M$ be a critical point of f, and, if critical, be degenerate or non-degenerate is clearly independent of the choice of the mapping A used to represent a neighborhood of p, among mappings A that are compatible with the given differential structure of M. A function, all of whose critical points are non degenerate, is termed non-degenerate. It is clear that the critical points of a non-degenerate function are isolated and hence finite in number.

This paper is concerned with the existence on M of non-degenerate functions f of class C^∞.

In accordance with a theorem of H. Whitney, Ref [3], the m-manifold M admits a regular (1-1) mapping of class C^∞ onto some compact differentiable manifold M' of class C^∞ in any euclidean space E_n for which $n \geq 2m + 1$.
In this theorem it is understood that the differential structure of M' is such that in some neighborhood R relative to M' of each point of M' a suitable subset of m of the euclidean coordinates (x_1, \ldots, x_n) in E_n will serve as «local coordinates» in an admissible representation of R of class C^∞. By virtue of Whitney's theorem, no generality will be lost in our search for non-degenerate functions on M if we assume that M is embedded in the sense of Whitney in a euclidean space E_n for which $n > m$. We shall make this assumption.

Let S_{n-1} be the unit sphere in E_n with center at the origin. A point (c) on S_{n-1} will be represented as a vector

$$c = (c_1, \ldots, c_n).$$

In terms of the rectangular coordinates (x) of a point $p \in E_n$ we introduce the coordinate vector

$$x = (x_1, \ldots, x_n).$$

If p is a point on M let $g(p)$ be the corresponding coordinate vector x. For each fixed point c on S_{n-1} the scalar product

$$c \cdot x = c_1 x_1 + \ldots + c_n x_n$$

enables us to define a function G_c on M with values

$$(1.3) \quad G_c(p) = (c \cdot x) \mid (x = g(p)). \quad (p \in M).$$

We shall prove the following theorem:

Theorem 1.1. The union of the points c on S_{n-1} such that the function G_c defined on M by (1.3) is non-degenerate is an open set on S_{n-1} whose complement ω has a Lebesgue measure zero on S_{n-1}.

Coordinate systems X and Y. A coordinate system in which a point $p \in E_n$ is represented by a set of coordinates (x_1, \ldots, x_n) or (y_1, \ldots, y_n) will be termed a coordinate system X or Y, respectively.

§ 2. - The n-manifold Λ of elements normal to M.

We shall make use of different rectangular coordinate systems in E. These systems shall, however, have a common origin of coordinates. We regard the points p of E_n, and in particular the points of M as fixed, represented by different coordinate vectors in different coordinate systems. If x and y are the coordinate vectors of the same point $p \in E_n$ in systems X and Y, then y shall equal $T x$, where T is an orthogonal transformation. We say that the systems X and Y are orthogonally related under T. We shall similarly refer to certain nonnull vectors u in E_n including vectors normal to M at some point p of M. Such vectors u, like the points $p \in M$, shall be regarded as fixed when the coordinate axes are rotated. If the vector u is represented by a coordinate vector a in the coordinate system X, and if X and Y are