The singular Cauchy problem
for a non-linear hyperbolic equation

Seymour Singer (Indiana - U.S.A.)

Summary. - The author demonstrates the existence of a smooth solution to a singular initial value problem for a quasilinear hyperbolic equation in two independent variables. The problem is transformed into an equivalent system of integral equations for which a solution is obtained by invoking Schauder's fixed point theorem.

1. - Introduction

In this paper we shall establish the solvability of a Cauchy problem for the second order quasilinear hyperbolic equation

\[
 r(x, y)^2 \frac{\partial^2 u}{\partial y^2} - u_{xx} - u_{yy} + f(x, y, u, u_x, u_y) = 0
\]

subject to the initial conditions

\[
 u(x, 0) = 0, \ u_x(x, 0) = \varphi(x)
\]

prescribed on a bounded segment \(I = [a, b] \) of the \(x \)-axis. \(\beta \) and \(\gamma \) are non-negative real constants at least one of which is positive. The coefficient \(r(x, y) \) is nonvanishing in a neighborhood of \(I \) in the upper half plane. Assuming a certain growth condition on the partial derivative \(f_u \) and a condition connecting the exponents \(\beta, \gamma \) with the initial normal derivative \(\varphi(x) \), we prove the existence of a smooth solution to the Cauchy problem (1.1), (1.2) in a neighborhood of the initial line lying in the upper half plane.

We say \(U(x, y) \) is of class \(\text{Lip}(x, y; M) \) on a domain \(D \) if \(|U(x_1, y) - U(x_2, y)| \leq M|x_1 - x_2| \) for all points \((x_1, y)\) in \(D \), \(i = 1, 2 \). Similarly, \(U(x, y) \) is of class \(\text{Lip}(x, y; M) \) on \(D \) if \(|U(x_1, y) - U(x_2, y)| \leq M(|x_1 - x_2| + |y_1 - y_2|) \) for all points \((x_1, y)\) of \(D \). If \(w \) is a continuous numerical function defined on a bounded domain \(D \), \(\|w\| \) denotes the uniform norm on \(\bar{D} \) i.e., \(\|w\| = \max |w(x, y)| \) for all \((x, y)\in \bar{D}\).

(*) Entrata in Redazione il 10 ottobre 1970.
We shall assume the initial normal derivative \(\varphi(x) \) is of class \(C^3 \) on \(I \), that \(|\varphi|, |\varphi'|, |\varphi''|, |\varphi'''| \) are all \(\leq \|\varphi\| \), and \(\varphi'' \in \text{Lip}(x; B) \) for some positive constant \(B > \|\varphi\| \).

We suppose there exist real constants \(m, n, m', n' \) satisfying

\[
(1.3) \quad m \leq \varphi(x) \leq n, \quad m' \leq \varphi'(x) \leq n'
\]

for all \(x \in I \). Then equation (1.1) is hyperbolic when \(y > 0 \) for every twice-differential solution \(U \) provided

\[
(1.4) \quad m > 0 \text{ if } \beta > 0 \text{ or } m' > 0 \text{ if } \gamma > 0
\]

The problem (1.1), (1.2) is singular since the equation is of parabolic type on the initial segment \(I \).

The coefficient \(r(x, y) \) occurring in (1.1) is assumed positive and bounded away from zero i.e., there exists a number \(\rho > 0 \) such that \(r(x, y) \geq \rho \) for \(x \in I, y \geq 0 \). Furthermore, we assume \(r(x, y) \) is continuous, has two continuous derivatives with respect to \(x \) and one continuous derivative with respect to \(y \). There exists a constant \(\sigma > 0 \) such that \(|r_x|, |r_y|, |r_{xx}|, |r_{yx}| \leq 0 \) and both \(r_{xx} \) and \(r_{yx} \) are of class \(\text{Lip}(x; \sigma) \) when \(x \in I, y \geq 0 \).

Let the curve \(\Gamma_1 \) be the solution of the initial value problem

\[
\frac{dx}{dy} = \sigma(By)^{\beta+\gamma} \\
x = a \text{ when } y = 0.
\]

Let the curve \(\Gamma_2 \) be the solution of the initial value problem

\[
\frac{dx}{dy} = -\sigma(By)^{\beta+\gamma} \\
x = b \text{ when } y = 0.
\]

The arcs \(I, \Gamma_1, \Gamma_2 \) enclose a bounded domain \(D \) contained within the characteristic triangle lying over the interval \(I \). Let \(Y \) denote the maximum ordinate of points in \(D \). For each \(\delta > 0 \) let \(D_\delta \) denote the subset of points \((x, y)\) in \(D \) for which \(0 < y < \delta \).

Recalling the bounds on \(\varphi, \varphi' \) we select \(a_0 < m \). If \(\beta > 0 \) we may assume \(a_0 > 0 \). Select \(a'_0 < m' \). If \(\gamma > 0 \) we may assume \(a'_0 > 0 \). We choose constants \(A_0 > n, A'_0 > n' \). We also assume \(B \geq A_0, B \geq A'_0 \).

We shall suppose the function \(f(x, y, u, p, q) \) is twice differentiable with respect to \(x, u, p, q \) on the region \(R \) consisting of all points \((x, y, u, p, q)\) such