ASYMPTOTIC ANALYSIS OF THE QUEUEING SYSTEM $G | G | 1 | \infty$
WITH GROUP SERVICING

G. Sh. Tsitsiashvili (Vladivostok, Russia) UDC 519.2

The objective of the research presented is to formulate and prove an assertion concerning the convergence of the waiting time in the $G | G | 1 | \infty$ system with group servicing to zero as $n \to \infty$.

1. Introduction

Queueing systems with group servicing are widely used in modeling computer networks, data transmission networks, wholesale systems, etc. (see [1]). Introducing group servicing into a single-channel system, we should consider arbitrary laws of distribution of service times and intervals between customer arrivals. We thus must investigate the $G | G | 1 | \infty$ systems whose analytic properties are rather complicated [2]. Then, it only remains for us to apply the statistical modeling [3]. But before we deal with this, it is appropriate to play with asymptotical methods [4]. The systems with group servicing allow us to choose a nonstandard asymptotics, namely, the mode where the group size n tends to infinity.

2. Formulation of the Theorem

We assume that the recurrent input flow of the $G | G | 1 | \infty$ system is characterized by random intervals b_i between the arrivals of the ith and $(i + 1)$th customers, $i \geq 1$. The random service time of the ith customer is a_i, $i \geq 1$. We assume that the random vectors (a_i, b_i), $i \geq 1$, are independent identically distributed, consist of independent components, and satisfy the inequality $E c_i < 0$, $c_i = a_i - b_i$. (1)

Now we turn to a description of the service of groups of customers of size n, denoting by $A_j^{(n)} = \sum_{i=n(j-1)+1}^{nj} a_i$, $B_j^{(n)} = \sum_{i=nj}^{n(j+1)-1} b_i$, the service time of the jth group, and the interval between the times of formation of the jth and $(j + 1)$th groups, respectively. It is clear that the sequence $C_j^{(n)} = A_j^{(n)} - B_j^{(n)}$, $j \geq 1$, consisting of independent identically distributed random variables; moreover, in view of (1), $E C_j^{(n)} = n E c_i < 0$. (2)

Let $W_j^{(n)}$ stand for the time between the completion of formation of the jth group and the beginning of its servicing; then the recurrence relation $W_j^{(n)} = \max(0, W_j^{(n)} + C_j^{(n)})$, $j \geq 1$, is true. Setting $W_1^{(n)} = 0$, we get the Markov chain $W_j^{(n)}$, $j \geq 1$, which, in view of (1) and (2), possesses the limit distribution

$$\lim_{j \to \infty} P\{W_j^{(n)} > t\} = P\{W_j^{(n)} > t\}, \quad t \geq 0, \quad W^{(n)} = \sup\left\{0, \sum_{j=1}^{k} C_j^{(n)}, k \geq 1\right\};$$

(4)

moreover, the sequence $P\{W_j^{(n)} > t\}$, $j \geq 1$, monotonically increases as j grows.

Theorem 1. We assume that for some $\mu > 0$ the inequality $E \exp\{\mu a_i\} < \infty$ (5)
is true (the Cramér condition). Then there exist positive $c, d, d < 1$, such that

$$P\{W^{(n)} > 0\} \leq cd^n, \quad n \geq 1.$$ \hspace{1cm} (6)

If, instead of the Cramér condition, for some $m > 2$ the inequality

$$Ea_i^m < \infty$$ \hspace{1cm} (7)

is true, then there exists a positive q_m such that

$$P\{W^{(n)} > 0\} \leq \frac{q_m}{n^{m-1}}, \quad n \geq 1.$$ \hspace{1cm} (8)

3. Proof of the Theorem

We begin with the Cramér condition. In view of (1) and (5), we are able to choose a positive ν such that

$$E\exp\{\nu c_i\} = \nu < 1.$$ \hspace{1cm} (9)

We introduce the notation

$$S^{(n)}_k = \sum_{j=1}^{k} c_j^{(n)},$$

then formulas (4) and (9) yield

$$P\{W^{(n)} > 0\} = P\{\sup\{0, S_k^{(n)}, k \geq 1\} > 0\} \leq \sum_{k=1}^{\infty} P\{S_k^{(n)} > 0\}$$

$$\leq \sum_{k=1}^{\infty} E\exp\{\nu S_k^{(n)}\} \leq \sum_{k=1}^{\infty} f^k n = \frac{f^n}{1 - f}, \quad n \geq 1.$$ \hspace{1cm} (10)

Taking $c = 1/(1 - f), d = f$, we arrive at (6).

Now, let us turn to the consideration of the exponential case. We introduce $c'_i = a_i - b_{n+i}$; then

$$S_k^{(n)} = \sum_{i=1}^{n_k} c'_i = \sum_{i=1}^{n_k} \Delta c_i - nk_c,$$ \hspace{1cm} (11)

where $c = -Ec_i > 0$, $\Delta c_i = c'_i + c$. Taking condition (7) into account, we obtain

$$E(\max(0, \Delta c_i))^m < \infty.$$ \hspace{1cm} (12)

By analogy with (10),

$$P\{W^{(n)} > 0\} \leq \sum_{k=1}^{\infty} P\{S_k^{(n)} > 0\} = \sum_{k=1}^{\infty} P\left\{\sum_{i=1}^{n_k} \Delta c_i > nk_c\right\}.$$ \hspace{1cm} (13)

Using condition (12) and the results of [5], we are able to choose n_m, g_m such that

$$P\left\{\sum_{i=1}^{n_k} \Delta c_i > nk_c\right\} \leq \frac{2nky_m}{(nk_c)^{m-1}} = \frac{2g_m}{r^{m-1}(nk)^{m-1}}$$ \hspace{1cm} (14)

for $n \geq n_m, k \geq 1$. Combining formulas (13) and (14), we arrive at

$$P\{W^{(n)} > 0\} \leq \frac{q_m}{r^{m-1}n^{m-1}}.$$ \hspace{1cm} (15)

3006