FLUCTUATIONS IN ONE-DIMENSIONAL DYNAMIC SYSTEMS

Yu. D. Mendygulov and V. M. Moskovkin

We consider one-dimensional dynamic systems with random fluctuations that are encountered in applications, analyze solutions, and investigate the stability of stationary points.

In applications we frequently encounter dynamic systems with one-dimensional phase spaces. Examples are provided by coastal systems in geomorphology, autonomous populations in biology, autocatalytic reactions in chemistry, etc. [1, 2]. In general, such systems are described by equations of the form

\[
\frac{dw}{dt} = F(w),
\]

where

\[w \in [a, b]; \quad a, b \in \mathbb{R}. \]

In such systems, an important role is often played by a variety of fluctuations that are as likely to be associated with fluctuations in macroscopic parameters as the stochastic nature of processes that occur in the systems themselves. Following [2], we will attempt to account for random fluctuations by replacing the deterministic equation (1) with the stochastic differential equation (a stochastic Ito equation)

\[
dw = F(w)dt + \sigma dw(t),
\]

where the second term describes the contribution of fluctuations to \(w \), and \(\sigma \) is the amplitude of the fluctuations (which we assume to be constant).

On \(dw(t) \) we impose the conditions

\[
\left\{ \frac{d}{dt}(w(t)) \right\} = 0, \\
\left\{ \left(\frac{d}{dt}(w(t)) \right)^2 \right\} = \sigma^2.
\]

where \(\left\{ \ldots \right\} = \int_0^\infty \rho(w, t | w_0, t_0) dw \) is the statistical average, and \(\rho(w, t | w_0, t_0) \) is the probability that the system coordinate in the phase space at time \(t \) will have the value \(w \) if it has the value \(w_0 \) at time \(t_0 \).

Averaging (2), we obtain Ito's equation for the mean value [2]:

\[
\frac{dw}{dt} = \langle F(w) \rangle.
\]

From Eq. (2) and the statistical independence of \(dw(t) \) and \(w \) we obtain, for the probability distribution function, the Itô-Fokker-Planck equation [2]:

\[
\frac{\partial \rho}{\partial t} = -\frac{\partial}{\partial w}(F(w)\rho) + \frac{\sigma^2}{2} \frac{\partial^2 \rho}{\partial w^2}.
\]

The formal solution of the Cauchy problem for this equation is of the form [3]

\[
\rho(w, t) = \exp \left\{ (t - t_0) \left[\frac{\sigma^2}{2} \frac{d^2}{dw^2} - \frac{d}{dw}F(w) \right] \right\} \varphi(w),
\]

where \(\varphi(w) \equiv \rho(w, t_0) \) is the initial condition.

We now introduce the notation \(p \equiv -i \frac{d}{dw} \), so the function \(\rho(w, t) \) takes the form of the amplitude of the probability (\(\Psi \)-function) for a one-dimensional quantum particle with coordinate \(w \) and Hamiltonian \(H = \frac{p^2}{2\gamma} + pF(w) \) [4]. Thus, every one-dimensional stochastic system can be treated as a one-dimensional quantum particle with imaginary mass \(i\gamma^{-2} \) that is subject to friction. It now follows, according to [4], that \(\rho(w, t) = |w|^2 \), where \(|w|^2 \) is the eigenvector of the coordinate operator of a quantum particle, and \(|t\rangle \) is the state vector of the particle, which depends on time and is equal to

\[
|t\rangle = \exp \{-iH(t - t_0)\}|t_0\rangle \equiv \exp \{-i(H_0 + H_1)(t - t_0)\}|t_0\rangle.
\]
where \(|t_0\rangle\) is the state vector of the particle at time \(t_0\).

\[
H_0 = \frac{g^2}{2\hbar^2} I^2, \quad H_1 = pF(w). \quad \langle w|t_0\rangle \equiv \phi(w).
\]

We represent \(|t\rangle\) in the form

\[
|t\rangle = \exp\{-iH_0(t-t_0)|t_0\rangle + U(t)|t_0\rangle;
\]

now, upon differentiation of expression (8), we obtain, for the operator \(U(t)\), the equation

\[
\frac{dU}{dt} = -i(H_0 + H_1)U - iH_1 \exp \{-iH_0(t-t_0)\},
\]

from which it follows that

\[
U(t) = \exp \{-iH_0(t-t_0)\} \int_{t_0}^{t} \exp \{-iH_0(\theta - t_0)\}
\times [-iH_1U(\theta) - iH_1 \exp \{-iH_0(\theta - t_0)\}] \, d\theta;
\]

this last is clearly equivalent to the integral equation

\[
\left\{1 + i \int_{t_0}^{t} d\theta \exp \{iH_0(\theta - t)\} H_1(\theta) \ldots \right\} U(t) = -i \int_{t_0}^{t} d\theta \exp \{iH_0(\theta - t)\}
\times H_1 \exp \{-iH_0(\theta - t_0)\}
\]

whose solution is

\[
U(t) = \sum_{n=0}^{\infty} (i)^{n+1} \int_{t_0}^{t} d\theta_n \int_{t_0}^{\theta_n} d\theta_{n-1} \ldots \int_{t_0}^{\theta_2} d\theta_1 \int_{t_0}^{\theta_1} d\theta_0 \exp \{iH_0(\theta_n - t)\} H_1(\theta_n)
\times \exp \{iH_0(\theta_{n-1} - \theta_n)\} H_1(\theta_{n-1}) \ldots \exp \{iH_0(\theta_0 - \theta_1)\} H_1(\theta_0) \exp \{-iH_0(\theta_0 - t_0)\}.
\]

Here we have used the known expansion for the operators \((I - A)^{-1} = \sum_{n=0}^{\infty} A^n\), where \(A\) is an operator and \(I\) is the identity operator. As a result,

\[
\rho(w, t) = \langle w|t \rangle = \langle w|\exp \{-iH_0(t-t_0)\}|t_0\rangle + \langle w|U(t)|t_0\rangle
\]

\[
= \exp \left\{(t-t_0) \frac{g^2}{2\hbar^2} \right\} \phi(w) + \sum_{n=0}^{\infty} (i)^{n+1} \int_{t_0}^{t} d\theta_n \int_{t_0}^{\theta_n} d\theta_{n-1} \ldots \int_{t_0}^{\theta_2} d\theta_1 \int_{t_0}^{\theta_1} d\theta_0 \exp \{iH_0(\theta_n - t)\} H_1(\theta_n)
\times \exp \{iH_0(\theta_{n-1} - \theta_n)\} H_1(\theta_{n-1}) \ldots \exp \{iH_0(\theta_0 - \theta_1)\} H_1(\theta_0) \exp \{-iH_0(\theta_0 - t_0)\}
\times \phi(y) + \sum_{n=0}^{\infty} \int_{t_0}^{t} d\theta_n \int_{t_0}^{\theta_n} d\theta_{n-1} \ldots \int_{t_0}^{\theta_2} d\theta_1 \int_{t_0}^{\theta_1} d\theta_0 \int_{t_0}^{\theta_n} d\theta_n \ldots \int_{t_0}^{\theta_1} d\theta_0 \exp \{iH_0(\theta_n - t)\} H_1(\theta_n)
\times \exp \{iH_0(\theta_{n-1} - \theta_n)\} H_1(\theta_{n-1}) \ldots \exp \{iH_0(\theta_0 - \theta_1)\} H_1(\theta_0) \exp \{-iH_0(\theta_0 - t_0)\}
\times \frac{\exp \left\{\frac{(w-y)^2}{2g^2(t-t_0)}\right\}}{g^2 \sqrt{2\Pi(t-t_0)^3/2}} [w - J_n] F(J_n - \frac{J_n}{g^2(t-t_0)^{3/2}})
\times \frac{\exp \left\{\frac{(J_n - J_{n-1})^2}{2g^2(t-t_0)}\right\}}{g^2 \sqrt{2\Pi(t-t_0)^3/2}} [J_n - J_{n-1}] F(J_{n-1})
\times \frac{\exp \left\{\frac{1}{2g^2(t-t_0)^{3/2}}\right\}}{g^3 \sqrt{2\Pi(t-t_0)^3/2}} [J_n - J_{n-1}] F(J_{n-1})
\times \frac{\exp \left\{\frac{1}{2g^2(t-t_0)^{3/2}}\right\}}{g^3 \sqrt{2\Pi(t-t_0)^3/2}} [J_n - J_{n-1}] F(J_{n-1}).
\]