THE SUBGROUPS OF THE SPECIAL LINEAR GROUP OVER A SKEW FIELD THAT CONTAIN THE GROUP OF DIAGONAL MATRICES

Bui Xuan Hai

UDC 519.46

For any (noncommutative) skew field T, the lattice of subgroups of the special linear group $\Gamma = SL(n,T)$ that contain the subgroup $\Delta = SD(n,T)$ of diagonal matrices (with Dieudonné determinants equal to 1) is studied. It is established that for any subgroup H, $\Delta \leq H \leq \Gamma$, there exists a uniquely determined unital net σ such that $\Gamma(\sigma) \leq H \leq N(\sigma)$, where $\Gamma(\sigma)$ is the net subgroup associated with the net σ and $N(\sigma)$ is its normalizer in Γ. Bibliography: 11 titles.

§1. INTRODUCTION

The problem concerning the standard description of subgroups of the special linear group $SL(n,k)$, $n \geq 2$, over a field k that contain the group $SD(n,k)$ of diagonal matrices was studied by several authors. Seitz [9] considered the case $n \geq 2$, $k = F_q$ (F_q is the finite field with q elements), where $q \geq 13$, $q \neq 2^m$. The case $n = 2$, k infinite, char(k) $\neq 2$, and Card(k^*/k^*) \leq Card(k^*) was studied by Vavilov and Dybkova (see [10]). Later, in a series of articles (see [5]) Vavilov gave the standard description of these subgroups for the case $n \geq 3$ and k an arbitrary field with the condition that Card(k) ≥ 7. In [11], there are several examples from which it follows that the condition Card(k) ≥ 7 is necessary. Thus, the result of Vavilov in [5] is best possible for an arbitrary field k. In this article we continue our study of an analogous problem for the case of skew fields begun in [4], where we gave the standard description of these subgroups in the special linear group over a skew field with infinite center. Here we shall discuss the case of a skew field with an arbitrary center that contains no less than seven elements. We make use of the following notation in our article: Λ is an associative ring with 1, Λ^* is the group of invertible elements of Λ; $G = GL(n, \Lambda)$ is the general linear group of degree n over Λ; $D = D(n, \Lambda)$ is the subgroup of diagonal matrices in G; $e = e_n$ is the identity matrix of degree n; e is the matrix having 1 at the position (i,j) and zero at all of the remaining positions; $t_{ij}(\alpha)$ is the elementary transvection $e + \alpha e_{ij}$, $\alpha \in \Lambda(i \pm j)$; $d_r(e)$ is the diagonal matrix $e + (e - 1)e_{rr}$ ($e \in \Lambda^*$, $1 \leq r \leq n$); T is a skew field; z is the center of T; $[T^*, T^*]$ is the commutator subgroup of the multiplicative group T^* of T; $\Gamma = SL(n,T)$ is the special linear group of degree n; $\Delta = SD(n,T)$ is the subgroup of diagonal matrices the Dieudonné determinants of which are equal to 1; $d_{rs}(\varepsilon)$ is the diagonal matrix $e + (e - 1)e_{rr} + (e - 1) e_{ss}$ for $r \neq s$ and $\varepsilon \in T^*$. If $a = (a_{ij})$ is an invertible matrix, then we denote $a^{-1} = (a_{ij}^{-1})$.

§2. NETS AND NET SUBGROUPS

Let Λ be an arbitrary associative ring with identity 1. For a natural number n we consider a square array

$$\sigma = (\sigma_{ij}), \quad 1 \leq i, j \leq n,$$

where all σ_{ij} are two-sided ideals of Λ. This array is called a net of degree n of ideals in Λ (in brief, a net of degree n over Λ) if

$$\sigma_{ir}\sigma_{rj} \subseteq \sigma_{ij} \quad (1)$$

for all values of the indices i, j, and r.

A net σ is called a unital net if $\sigma_{ii} = \Lambda$ for all $i = 1, 2, \ldots, n$. For a given net σ we denote by $M(\sigma)$ the collection of all matrices $a = (a_{ij})$ in the ring $M(n, \Lambda)$ of matrices of degree n over Λ for which $a_{ij} \in \sigma_{ij}$ for all i and j. In addition, we consider the following concept, which was introduced in [2].

Published in Zapiski Nauchnykh Seminarov POMI, Vol. 211, 1994, pp. 91-103. Original article submitted April 12, 1993.
Definition. Let σ be an arbitrary net of degree n over a ring A. The largest subgroup of the general linear group $G = GL(n, A)$ contained in the multiplicative system $e + M(\sigma)$ is called the net subgroup in $GL(n, A)$ that corresponds to the net σ and is denoted by $G(\sigma)$. If σ is a unital net, then $G(\sigma)$ is also called a unital net subgroup.

Let R be a commutative ring with 1. The subgroup of the group $GL(n, R)$ that consists of all invertible matrices with determinant equal to 1 is called the special linear group of degree n over R. This group is denoted by $F = SL(n, R)$.

Let A be a commutative ring with identity 1. We consider a subgroup $H, D(n, A) \leq H \leq GL(n, A)$. If A is generated by its invertible elements as a ring, i.e., if each element of A is represented as a sum of invertible elements, then the subgroup H corresponds to some unital net of degree n over A. In fact, if $i \neq j$ we put

$$\sigma_{ij} = \alpha \in A/t_{ij}(\alpha) \in H.$$

Then σ_{ij} is a two-sided ideal in view of the following obvious formulas:

$$d_i(\varepsilon)t_{ij}(\alpha)d_i(\varepsilon^{-1}) = t_{ij}(\varepsilon\alpha), \quad \varepsilon \in \Lambda^*,$$

$$d_j(\varepsilon)t_{ij}(\alpha)d_j(\varepsilon^{-1}) = t_{ij}(\varepsilon\alpha), \quad \varepsilon \in \Lambda^*.$$

If, moreover, we put $\sigma_{ii} = \Lambda$ for all $i = 1, 2, \ldots, n$, we shall have a unital net $\sigma = (\sigma_{ij})$. This net is called the unital net associated with the subgroup H.

Now let A be a semilocal ring and let $F = SL(n, A)$ be the special linear group over A. Consider a subgroup $H, ED(n, A) \leq H \leq SL(n, A)$, where $ED(n, A) = E(n, A) \cap D(n, A)$. This subgroup H is called an intermediate subgroup. Put

$$\sigma_{ij} = \alpha \in A/t_{ij}(\alpha) \in H, \quad i \neq j.$$

Then σ is a two-sided ideal in view of the following formulas:

$$t_{ij}(\varepsilon\alpha) = d_k(\varepsilon)t_{ij}(\alpha)d_k(\varepsilon^{-1}), \quad \varepsilon \in \Lambda^*, \quad k \neq i,$$

$$t_{ij}(\varepsilon\alpha) = d_k(\varepsilon)t_{ij}(\alpha)d_k(\varepsilon^{-1}), \quad \varepsilon \in \Lambda^*, \quad k \neq j.$$

Moreover, for all $i = 1, 2, \ldots, n$ we put $\sigma_{ii} = \Lambda$. Then the array $\sigma = (\sigma_{ij})$ is the unital net associated with the subgroup H.

Now, let T be a skew field, $\Gamma = SL(n, T)$ the special linear group over T, and $\Delta = SD(n, T)$ the subgroup of diagonal matrices whose Dieudonné determinants are equal to 1. Let Z be the center of T. If Z is infinite, then for all $n \geq 3$ the standard description of the intermediate subgroups was obtained in [4]. In fact, the following theorem was proved.

Theorem 1 (see [4]). Let T be a skew field with infinite center and $n \geq 3$. Assume that $\Gamma = SL(n, T)$ and $\Delta = SD(n, T)$. Then for each subgroup $H, \Delta \leq H \leq \Gamma$, there exists a unique unital net σ of degree n over T such that

$$\Gamma(\sigma) \leq H \leq N(\sigma),$$

where $\Gamma(\sigma)$ is the net subgroup of Γ that corresponds to the net σ and $N(\sigma)$ is the normalizer of the subgroup $\Gamma(\sigma)$ in Γ.

In this article, we consider the case of a skew field T with a weaker condition that the center of T contains no less than seven elements.