MINIMAL AND MAXIMAL FIXED POINT THEOREMS AND ITERATIVE
TECHNIQUE FOR NONLINEAR OPERATORS IN PRODUCT SPACES*

Lan Kun-quan (兰坤泉) Ding Xie-ping (丁协平)
(Sichuan Normal University, Chengdu)
(Received Feb. 11, 1991)

Abstract

In this paper, we study minimal and maximal fixed point theorems and iterative
 technique for nonlinear operators in product spaces. As a corollary of our result, some
coupled fixed point theorems are obtained, which generalize the coupled fixed point
theorems obtained by Guo Da-jun and Lankshmikantham and the results obtained by Lan
in [4], and [6].

Key words minimal and maximal fixed point, coupled fixed point

The monotone iterative technique is an important method for studying the solutions of
nonlinear differential equations (see [1], [2]). On the basis of coupled quasisolutions of the initial
value problems for ordinary differential equations, Guo and Lakshmikantham in [2] introduced
the concept of abstract coupled fixed points for some operators and obtained many coupled fixed point
theorems and their applications. In this paper, we first obtain a minimal and maximal fixed point
theorem for nonlinear operators in product spaces, which extends Theorem 1 in [4] and Theorem 1
in [5]. As a corollary of our result, a coupled fixed point theorem for nonlinear operators is
obtained, which extends Theorem 1 in [2] and Theorem 1 in [6].

I. Statement and the Proofs of Theorems

Let X be a real Banach space, P a cone in X, and "≤" an ordering in X induced by P defining y≥x
if and only if y-x∈P. The pair (X,P) is called an ordered Banach space with positive cone P, if X is
given ordering induced by P. Let u_0, v_0∈X, and u_0<v_0 [u_0<v_0]={x∈X, u_0≤x≤v_0}. An ordered
sequence {x_n} in X is said to be nondecreasing (resp. nonincreasing) if, for each n∈N (natural
number set), x_n≤x_{n+1} (resp. x_n≥x_{n+1}). A map A:D⊂X→X is said to be nondecreasing (resp.
nonincreasing) if x≤y (x,y∈D) implies Ax≤Ay (resp. Ay≥Ax). If D⊂X is a bounded set, then the
set measure of noncompactness of D, ν(D) is defined by

ν(Q)=inf{d>0: D=∪_{i=1}^{m} D_i, diam(D_i)≤d} (1.1)

Clearly, ν(Q)=0 if and only if Q is precompact, and ν(D_1∪D_2)=max{ν(D_1), ν(D_2)} other
properties can be seen in [3]. A map A:D⊂X→X is said to be condensing if, ν(A(Q))<ν(Q) for
any bounded set Q⊂D with ν(Q)=0. Obviously, the completely continuous map A is condensing.
Let → and ← denote strong and weak convergence, respectively.

Lemma 1 Let (X,P) be an ordered Banach space and {u_n} a monotone sequence (i.e. {u_n} is

*The project supported by the National Natural Science Foundation of China
nondecreasing or nonincreasing). If \(\{u_{n_k}\} \subseteq \{u_n\} \), \(\{u_{m_i}\} \subseteq \{u_n\} \) and \(u_{n_k} \to u^* \), \(u_{m_i} \to u^* \), then \(u^* = u^* \).

Proof Using the monotoneness of \(\{u_n\} \) and weak closeness of \(P \). Lemma 1 can be easily proved.

Lemma 2 Let \((X, P)\) be an ordered Banach space. If \(\{u_n\} \) is a weakly precompact monotone sequence in \(X \), then there exists \(u \in X \) such that \(u_n \to u \). Furthermore, assume \(\{u_n\} \) is nondecreasing (resp. nonincreasing) then \(u_n \leq u \) (resp. \(u_n \geq u \)) for \(n \in \mathbb{N} \).

Proof Without loss of generality, we may assume that \(\{u_n\} \) is a nondecreasing sequence. Since \(\{u_n\} \) is weakly precompact, there exist \(\{u_{n_k}\} \subseteq \{u_n\} \) and \(u_0 \in X \) such that \(u_{n_k} \to u_0 \). If \(u_n \to u_0 \), then there exist \(\varepsilon \geq 0 \) and \(f_0 \in X^* \) (dual space of \(X \)) and \(\{u_{n_k}\} \subseteq \{u_n\} \) such that \(|f_0(u_{n_k} - u_0)| \geq \varepsilon \). Also since \(\{u_{n_k}\} \) is weakly precompact, there exists a weakly converging subsequence \(\{u_{m_i}\} \subseteq \{u_{n_k}\} \), we may assume \(u_{m_i} \to u^* \). So we see \(u^* = u_0 \) which contradicts Lemma 1. Hence \(u_n \to u_0 \). Since \(u_{n+m} \geq u_n \) and \(u_{n+m} = u_n \in P \) for any fixed \(n \in \mathbb{N} \) and any \(m \in \mathbb{N} \) and \(P \) is weakly closed, \(m \to +\infty \) yields \(u_0 = u \in P \), and thus, \(u_n \leq u_0 \) for any \(n \in \mathbb{N} \).

Let \(X \) and \(Y \) be two real Banach spaces with norm \(\| \cdot \|_X \) and \(\| \cdot \|_Y \), respectively. The norm in product space \(X \times Y \) is defined as follows: For \(1 \leq p \leq +\infty \) and \((x, y) \in X \times Y \), set

\[
\| (x, y) \| = \begin{cases} \max \{ \| x \|_X, \| y \|_Y \} & (p = +\infty) \\ \left(\| x \|_X^{\frac{1}{p}} + \| y \|_Y^{\frac{1}{p}} \right)^{\frac{1}{1/p}} & (1 \leq p < +\infty) \end{cases}
\]

(\(* \))

(\(** \))

It is known that \(X \times Y \) is a Banach space with the norm defined above and with linear space addition and scalar multiplication defined componentwise, and

\[
(x_n, y_n) \to (x_0, y_0) \text{ if and only if } x_n \to x_0 \text{ and } y_n \to y_0
\]

(1.2)

Lemma 3 Let \((X, P_1)\) and \((Y, P_2)\) be two ordered Banach spaces. Then (1.1) \((X \times Y, P_1 \times (-P_2))\) is an ordered Banach space with positive cone \(P_1 \times (-P_2) \). The order in the following product space is induced by \(P_1 \times (-P_2) \).

(2) Let \(w_1 = (x_1, y_1) \), \(w_2 = (x_2, y_2) \) and \(w_1, w_2 \in X \times Y \), then \(w_1 \preceq w_2 \) if and only if \(x_1 \preceq x_2 \) and \(y_2 \preceq y_1 \).

Now we prove the main result of this paper.

Theorem Let \((X, P_1)\) and \((Y, P_2)\) be two ordered Banach spaces and \((u_0, v_0), (x_0, y_0) \in X \times Y \) such that \((u_0, v_0) \preceq (x_0, y_0) \). Suppose that \(B : (u_0, v_0), (x_0, y_0) \mapsto X \times Y \) is nondecreasingly condensing map. If the following conditions hold:

\((H_1)\) \(B(D) \) is bounded;

\((H_2)\) \((u_0, v_0) \preceq B(u_0, v_0) \) and \(B(x_0, y_0) \preceq (x_0, y_0) \);

\((H_3)\) If \(x_n \to x \), then for any \(y \in Y \), \(B(x_n, y) \to B(x, y) \) and if \(y_n \to y \), then for any \(x \in X \), \(B(x, y_n) \to B(x, y) \).

Then (a) \(B \) has minimal and maximal fixed points \((u^*, v^*) \) and \((x^*, y^*) \) i.e. \(B(u^*, v^*) = (u^*, v^*) \), \(B(x^*, y^*) = (x^*, y^*) \) and for any fixed point \((x, y) \in (u_0, v_0), (x_0, y_0) \) of \(B \), \(u^* \preceq x \preceq x^* \) and \(y^* \preceq y \preceq y^* \). Moreover, we have

\[
(\text{b) } u^* = \lim_{n \to +\infty} u_n, \quad v^* = \lim_{n \to +\infty} v_n, \quad x^* = \lim_{n \to +\infty} x_n \quad \text{and} \quad y^* = \lim_{n \to +\infty} y_n, \quad \text{where } \quad (u_{n+1}, v_{n+1}) = B(u_n, v_n) \quad \text{and} \quad (x_{n+1}, y_{n+1}) = B(x_n, y_n), \quad n = 0, 1, 2, \ldots \text{ and}\n\]

\[
(\text{c) } u_0 \preceq u_1 \preceq \ldots \leq u_n \preceq \ldots \leq x_n \preceq \ldots \leq x_0 \quad \text{and} \quad y_0 \preceq y_1 \preceq \ldots \preceq y_n \preceq \ldots \preceq y_0.
\]