NUMERICAL METHODS FOR PARABOLIC EQUATION WITH A SMALL PARAMETER IN TIME VARIABLE

Wu Qi-guang (吴启光) Li Ji-chun (李继春)

(Dept. of Math., Nanjing Univ., Nanjing)

(Received Nov. 6, 1990)

Abstract

In this paper, we discuss the parabolic equation with a small parameter on the derivative in time variable. We construct difference scheme on the non-uniform mesh according to Bakhvalov, and prove the one-order uniform convergence of this scheme. Numerical results are presented.

Key words difference scheme, uniform convergence, parabolic type equation, non-uniform mesh

I. Introduction

In this paper we discuss a parabolic equation with a small parameter in time variable,

\[Lu = a(x,t) \frac{\partial^2 u}{\partial x^2} + b(x,t) \frac{\partial u}{\partial x} - c(x,t) u - \varepsilon \frac{\partial u}{\partial t} = f(x,t,\varepsilon), \quad (x,t) \in D \]

\[u(x,0) = \varphi(x), \quad u(0,t) = \psi_0(t), \quad u(1,t) = \psi_1(t) \]

where \(D = \{0 < x < 1, \ 0 < t < T\} \), and \(a, b, c, f, \varphi, \psi_0 \) and \(\psi_1 \) are sufficiently smooth with

\[a(x,t) \geq \alpha > 0, \ c(x,t) \geq \varepsilon > 0 \]

on \(D \). Titov[1] previously constructed the exponentially fitted difference scheme for problem (1.1)–(1.2), but only received uniform convergence for \(t \geq M \delta (0 < \delta < 1) \), Hsiao, Jordan[2] also gave a modified Crank-Nicolson-Galerkin scheme for the problem

\[\varepsilon \frac{\partial u}{\partial t} - \sum_{i,j=1}^n \frac{\partial}{\partial x_i} \left[a_{ij}(x) \frac{\partial u}{\partial x_j} \right] + c(x) u = f(x,t) \]

but only received uniform convergence for \(t \geq M \delta (0 < \delta < 1) \). In fact, they don’t consider the boundary layer \(t = 0 \). Here, we shall construct difference scheme with non-uniform time step by Bakhvalov[3], and prove the uniform convergence in \(\varepsilon \) for all \(t \in [0, T] \).

II. Estimates of the Solution Derivatives

For the following of this paper we shall assume that \(a \) and \(b \) are independent of \(t \), and \(\psi_0(t) = \psi_1(t) = 0 \).

Theorem 1 Let \(u(x,t) \) be the solution to problem (1.1)–(1.2), if \(Lu < 0 \) and \(u(x,t) > 0 \) in boundary \(\Gamma \), then \(u(x,t) > 0 \) on \(D \).
Proof It's easy to prove it by IL'in [4].

Lemma 1 Let \(u(x,t) \) be the solution to problem (1.1) - (1.3), if \(|f(x,t,e)| \leq N \) on \(\mathcal{D} \), and \(|u(x,t)| \leq m \) in \(\Gamma \), then \(|u(x,t)| \leq \max \{ N/e, m \} \), where \(N \) and \(m \) are arbitrary positive constants independent of \(e \).

Proof Let

\[
 w(x,t) = \max \{ N/e, m \} \pm u(x,t)
\]

then

\[
 Lw = -c \cdot \max \{ N/e, m \} \pm Lu(x,t) \leq -N \pm Lu(x,t) \leq 0
\]

and

\[
 w(x,t) \geq m \pm u(x,t) \geq 0 \quad \text{in} \quad \Gamma
\]

so \(|u(x,t)| \leq \max \{ N/e, m \} \) using Theorem 1.

Theorem 2 Assume that \(u(x,t) \) is the solution to problem (1.1) - (1.3), then

\[
 \frac{\partial u(x,t)}{\partial t} \leq M \left(1 + e^{-\frac{\partial t}{e}} \right), \quad (x,t) \in \mathcal{D}
\]

\[
 \frac{\partial^2 u(x,t)}{\partial t^2} \leq M \left(1 + e^{-\frac{\partial t}{2e}} \right), \quad (x,t) \in \mathcal{D}
\]

\[
 \frac{\partial^k u(x,t)}{\partial x^k} \leq M, \quad k = 1, 2, 3, 4, \quad (x,t) \in \mathcal{D}
\]

\[
 \frac{\partial^k u(x,t)}{\partial x^k \partial t} \leq \frac{M}{e}, \quad k = 1, 2, \quad (x,t) \in \mathcal{D}
\]

Proof First, we estimate \(\partial u / \partial t \). Let \(w_1(x,t) = M \left(1 + e^{-\frac{\partial t}{e}} \right) \pm \partial u / \partial t \), on the side \(t = 0 \) we have \(|\partial u / \partial t| \leq M_1/e \) by (1.1) - (1.2), thus for \(M \) sufficiently large, \(w_1(x,t) \geq 0 \). On the sides \(x = 0 \) and \(x = 1 \) we have \(u = 0 \) and hence \(\partial u / \partial t = 0 \), thus \(w_1(x,t) \geq M_1/e \). Now

\[
 Lw_1 = M \left\{ -c \cdot \left[1 + e^{-\frac{\partial t}{e}} \right] - e \cdot e^{-\frac{\partial t}{e}} \cdot \left[-\frac{\partial f}{\partial t} + u \frac{\partial c}{\partial t} \right] \right\} \leq -M \frac{\partial t}{e} \left[f / \partial t + u \partial c / \partial t \right]
\]

So for \(M \) sufficiently large, \(Lw_1 \leq 0 \), thus \(|\partial u / \partial t| \leq M \left(1 + e^{-\frac{\partial t}{e}} \right) \) using Theorem 1.

Then, we shall estimate \(\partial^2 u / \partial t^2 \). Let \(w_2(x,t) = M \left(1 + e^{-\frac{\partial t}{2e}} \right) \pm \partial^2 u / \partial t^2 \), on the side \(t = 0 \), differentiate (1.1) with respect to \(t \) and let \(t = 0 \), and so we have \(|\partial^2 u / \partial t^2| \leq M_2/e^2 \), thus for \(M \) sufficiently large, \(w_2 \geq 0 \). On the sides \(x = 0 \) and \(x = 1 \), by assumption \(u = 0 \), then \(\partial^2 u / \partial t^2 = 0 \), thus \(w_2 \geq 0 \). Now

\[
 Lw_2 = M \left\{ -c \left[1 + e^{-\frac{\partial t}{2e}} \right] - e \cdot e^{-\frac{\partial t}{2e}} \cdot \left[-\frac{\partial f}{\partial t} + u \frac{\partial c}{\partial t} \right] \right\} \pm L \left(\frac{\partial^2 u}{\partial t^2} \right)
\]