LIMIT DISTRIBUTIONS OF FINITE MARKOV CHAINS AND SEMI-GROUPS OF STOCHASTIC MATRICES

V. Kazakevičius

INTRODUCTION

We recall one theorem from the theory of summation of independent random variables ([1, Ch. IX, Thm. 2]).

THEOREM. The following classes of probability distributions coincide:
(i) limit distributions of sums

\[S_{N,n(N)} = \sum_{i=1}^{n(N)} X_{N_i}, \]

where in each series random variables \(X_{N_i} | 1 \leq i \leq n(N)\) are independent and identically distributed and a sequence of integer numbers \(n(N)\) tends to \(+\infty\);
(ii) distributions of increments of stochastic processes with independent and stationary increments;
(iii) infinitely divisible distributions.

In the present note we obtain the similar characterization of limit distributions of \(S_{N,n(N)}\) in the case where \((S_{N,i} | i \geq 0)\) is a finite Markov chain.

The connecting link between the theory of summation of independent random variables and theory of Markov chains is an operator approach in the theory of summation ([1, Chs. VIII, IX]). Let \(C\) denote the linear space of continuous functions on the real line \(\mathbb{R}\) with finite limits at infinity and with supremum norm. For any probability \(F\) on \(\mathbb{R}\) we define the linear operator \(\tilde{F}\) on \(C\) by the formula

\[(\tilde{F} f)(x) = \int f(x - y)F(dy). \]

Then the following three classes of operators correspond to the classes (i), (ii), and (iii) of distributions, respectively:

1) class of limits in strong operator topology of operators of the form \(\tilde{F}_{n(N)}\);
2) operators of the form \(\tilde{F}(1)\), where the family \((\tilde{F}(u) | u \geq 0)\) is continuous with respect to \(u\) in the strong operator topology and satisfies the identity \(\tilde{F}(u + v) = \tilde{F}(u)\tilde{F}(v)\);
3) class of operators \(\tilde{F}\), for any \(k \geq 1\) admitting the representation \(\tilde{F} = \tilde{F}_k\) with some operator \(\tilde{F}_k\).

Now let \((S_n | n \geq 0)\) be, finite homogeneous Markov chain with a matrix of transition probabilities \(P\). If \(p^T\) is row vector of initial probabilities of the chain then the distribution of the random variable \(S_n\) is given by the row \(p^T P^n\). Therefore in order to find the limit distributions of \(S_n\) it is sufficient to investigate the asymptotic of the sequence of matrices \(P^n\).

Before the formulation of the main results of the note we shall recall some definitions. A stochastic matrix \(J\) is called quasi-projector if \(J^{s+1} = J\) for some \(s \geq 1\).
A stochastic matrix L is called infinitely divisible if for any $k \geq 1$ it can be represented in the form $L = L_k^k$ with some stochastic matrix L_k.

By continuous semi-group of stochastic matrices we understand a family $(L(u) \mid u > 0)$ of stochastic matrices continuous with respect to u and satisfying the semi-group identity

$$L(u + v) = L(u)L(v).$$ \hfill (1)

THEOREM 1. The following classes of stochastic matrices coincide:

(i) limit matrices for $P_n^{(N)}$, where P_N is a sequence of stochastic matrices and $n(N) \to +\infty$;

(ii) matrices of the form $L(1)J$, where $L(u) \mid u > 0$ is a continuous semi-group of stochastic matrices and J is a quasi-projector commuting with any $L(u)$;

(iii) matrices of the form $\exp(-\mu)\exp(\mu \Pi)J$, where $\mu > 0$, Π is a stochastic matrix and J is a quasi-projector commuting with Π.

More over, any infinitely divisible matrix L is of the form

$$L = \exp(-\mu)\exp(\mu \Pi)J,$$

where $\mu > 0$, Π is a stochastic matrix and J is a quasi-projector commuting with Π.

The proof of this theorem is based on the following result which is of independent interest itself.

THEOREM 0. Let P_N be a sequence of stochastic matrices and $n(N) \to +\infty$. Then there exist $s \geq 1$ and a subsequence $(N') \subset (N)$ such that for any sequence of integers $m(N')$ satisfying the conditions

$$m(N')/n(N') \to u \in [0; +\infty[,$$

there exists a limit $\lim P_{N'}^{m(N')}$. If $P_N \to \overline{P}$, then as s we can take a number of cyclic classes of the matrix \overline{P}.

This theorem can be reformulated as follows.

THEOREM 2. Let P_N be a sequence of stochastic matrices converging to acyclic stochastic matrix, $n(N) \to +\infty$ and

$$Q_N(u) = P_n^{[\alpha(u)}$$

where $[\alpha]$ stands for the integer part of α. Then there exists a continuous semi-group of stochastic matrices $L(u)$ and a subsequence $(N') \subset (N)$ such that $Q_N(u) \to L(u)$ uniformly on compact subsets of the interval $[0; +\infty[$.

1. **PROOFS**

First we recall the main notation which will be used in the proofs. The notation arg z and log z stand for the principal value of argument and the logarithm of a complex number z, t denotes the imaginary unit and $[x]$ denotes the integer part of a real number x.

By P we will denote stochastic matrices, $\sigma(P)$ denotes the spectrum of a matrix P and $\sigma^*(P)$ denotes the part of the spectrum consisting of eigenvalues of modulus 1. A matrix is called a simple one if all its eigenvalues are distinct. $\| \cdot \|$ denotes any matrix norm.

Practically all variables which will be used in the proofs (only with exception for P, μ, and L) will denote sequences of objects, but for brevity we shall omit the index N. Any statement on the convergence of any sequence to any limit must be understood as the convergence as $N \to \infty$, if not stated in the contrary.

Before the proof of Theorem 0 we provide the following two lemmas.

LEMMA 1. Let $P \to \overline{P}$, $n \to +\infty$, $\sigma^*(\overline{P}) = \{1\}$, $\lambda \in \sigma(P)$, $\liminf |\lambda|^n > 0$. Then $n \arg \lambda = O(1)$.

Proof. Suppose the contrary and take a sequence such that $\lambda^n \to \mu \neq 0$ and $n|\arg \lambda| \to +\infty$. Set $m = [1/|\arg \lambda|]$.

Since $|\lambda|^m \to |\mu| \neq 0$, then $|\lambda| \to 1$; therefore $\lambda \to 1$, since $\sigma^*(\overline{P}) = \{1\}$. Thus, $\arg \lambda \to 0$ and this implies $m \arg \lambda \to 1$. Whence $m/n \to 0$, therefore $|\lambda|^m \to 1$ and $\lambda^m \to \exp(i)$. We arrived at a contradiction, since the number $\exp(i)$ can not be an eigenvalue of any stochastic matrix. The lemma is proved.