STUDY OF MO$_2$N CATALYST ACTIVITY AND STABILITY IN CO OXIDATION

Guohuang Xie*, Tingfang Bai*, Lidun An*, Hanqing Wang* and Jinmao You*

*Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences,
Lanzhou 730000 P. R. China,

bDepartment of Chemistry, QuFu Normal University, QuFu 273165

Received August 11, 1997
Accepted October 8, 1997

Abstract

Unsupported molybdenum nitride powder with S_g of 115 m2g$^{-1}$ (passivated) has been prepared by the temperature-programmed reaction of MoO$_3$ in H$_2$/N$_2$ mixture. It exhibited high catalytic activity in CO oxidation. DTA experiments in the air flow and O$_2$ temperature-programmed pulse reaction (TPPR) showed that the optimal oxidation temperature for the Mo$_2$N catalyst was under 450°C because of its instability at high temperature in the presence of O$_2$.

Keywords: Mo$_2$N, CO oxidation, instability

INTRODUCTION

In recent years, high specific surface area Mo$_2$N has received great attention in heterogeneous catalysis [1-4]. It has shown good catalytic activity in a wide variety of reactions: the hydrogenation of CO, synthesis of NH$_3$, methanation, hydrodenitrogenation and hydrodesulfurization [2, 3], and might be a promising catalytic material.

The preparation of Mo$_2$N as a catalytic material gave very good results. The production of Mo$_2$N with a high specific surface area (170 m2g$^{-1}$) in temperature-programmed reactions (TPR) of MoO$_3$ in flowing NH$_3$ has been reported [1]. In our research group, Mo$_2$N powder with S_g of 115 m2g$^{-1}$ (passivated) was also obtained in the H$_2$/N$_2$ mixture by the TPR process [5].
At present, attention is mainly concentrated on hydrogenation catalyzed by Mo$_2$N. However, oxidation processes, such as CO oxidation, have not been studied.

In this paper, we evaluated the catalytic activity of Mo$_2$N for CO oxidation and studied its stability at high temperature in the presence of O$_2$ by means of TPRR and DTA technologies.

EXPERIMENTAL

Preparation of Mo$_2$N

A specially designed quartz reactor was used for the H$_2$/N$_2$ mixture with a volume ratio of 1.2 as feed gas. 3 g of MoO$_3$ were used and H$_2$/N$_2$ mixture was passed countercurrently through a boiling bed of MoO$_3$ at a space velocity of 34,000 h$^{-1}$ under temperature-programmed conditions. The TPR process was performed at a linear heating rate of 2.5 K/min up to 973 K. Then the system was kept at this temperature for 1 h. After the synthesis, the sample was further passivated at room temperature. The specific surface area was found to be 115 m2/g$^{-1}$ by a CARLO-ERBA 1800 instrument.

Activity measurement

The activity of Mo$_2$N was evaluated with a fixed bed flow reactor at atmospheric pressure. CO + O$_2$ + N$_2$ (CO: 4 %, O$_2$: 20 %, N$_2$: 76 %) gas mixture was used as a feed gas and the reaction effluent was analyzed by gas chromatography. The activity of Mo$_2$N for the CO oxidation was indicated by the conversion of CO at an assigned temperature.

Thermal analysis measurements

The thermal stability of Mo$_2$N was determined by using a DuPont 1090 derivatograph. The DTA curves were recorded. The sample (17.46 mg) was heated in a platinum crucible. The heating rate was 10 K/min. The air flow rate was 50 mL min$^{-1}$.

O$_2$ temperature programmed pulse reaction

The Mo$_2$N catalyst mentioned above was heated in the N$_2$ flow in a quartz reactor from room temperature to 600 and held for 30 min. Then the flow was changed for He and the sample was cooled to room temperature. Oxygen was fed