ON CHAINS OF RELATED SETS

C. W. Leininger
Department of Mathematics, Arlington State College, Arlington, Texas

If K is a partition of a set K which is partially ordered by the relation R and R is a collection of pairs of sets of K such that the sets of each pair are related by R in the sense of Rashevsky, then R is a relation which partially orders K. Necessary and sufficient conditions that K be a chain are obtained, and if K is a chain under these conditions, it is shown that K is unique.

Certain propositions on relations between sets were presented by N. Rashevsky (1961) and M. Sommerfield (1963). In this paper K denotes a finite set which is partially ordered by a relation denoted by R, i.e. $R \subseteq K \times K$ which is reflexive, antisymmetric and transitive. We investigate collections of subsets of K such that if A, B is a pair of subsets of K, then A and B are related by R in the sense of Rashevsky, and state conditions under which such a collection forms a chain.

For convenience we restate the definitions (Rashevsky, 1961) of relations between sets. The statement that the set A is strongly related by R to the set B, symbolized by ARB, means that $A \times B \subseteq R$. The statement that A is weakly related by R to B, symbolized by $AR'B$, means that $A \times B \notin R$ and if $R_{AB} = A \times B \cap R$, then R_{AB} is from A onto B. We use the symbol ARB to signify ARB or $AR'B$.

The following theorem is a slight extension of Theorem 13 (Sommerfield, 1963).

Theorem 1: If each of A, B and C is a set of a collection of subsets of K, ARB and BRC, then ARC. Furthermore, if ARB or BRC, then ARC.

103
Proof: If $x \in A$, there is a $y \in B$ such that $(x, y) \in R$, and if $y \in B$, there is a $z \in C$ such that $(y, z) \in R$. Hence $(x, z) \in R$. Similarly, if $v \in C$, there is a $u \in A$ such that $(u, v) \in R$. Hence ARC. Suppose ARB or BRC. Then if $v \in C$ and if $u \in A$, $(u, v) \in R$ so that ARC.

We observe that ARB implies that not more than two elements of K are common to A and B. Hence ARB does not imply ARA. Since the remainder of this paper is concerned with collections of subsets of K no two of which contain a common element, it may happen, for example, that if A, B and C are subsets of K, then ARB, ARC, $AR'C$ and BRB.

The statement that K is a partition of K means that K is a collection of subsets of K no two of which intersect such that $\cup_{A \in K} A = K$. With R denoting the collection of pairs (A, B) of sets of K such that ARB, the following theorem shows that the relation R induces a partial ordering of K by R.

Theorem 2: If K is a partition of K, then K is partially ordered by R.

Proof: If $A \in K$ and $x \in A$, then $(x, x) \in R_A$, so that $(A, A) \in R$. Suppose $(A, B) \in R$ and $B \neq A$. If $x \in A$, there is a $y \in B$ such that $(x, y) \in R$. Suppose if $y \in B$, there is a $z \in A$ such that $(y, z) \in R$. Then if $x \in A$, there is a $z \in A$, $z \neq x$, such that $(x, z) \in R$. Since A is finite, this leads to the contradiction of a pair u, v of elements of A such that $(u, v) \in R$ and $(v, u) \not\in R$. Hence there is a $y \in B$ such that if $x \in A$, then $(y, x) \not\in R$. Thus $(B, A) \not\in R$. It follows from Theorem 1 that R is transitive.

Examples of finite partially ordered sets are conveniently given by means of diagrams. If M is partially ordered by S, the statement that an element q of M covers the element p of M means that $(p, q) \in S$ and if $(p, z) \in S$, $z \neq p$ and $z \neq q$, then $(z, q) \not\in S$. A figure obtained by representing elements of M by dots so that if q covers p, then the dot for q is above the dot for p, and connecting the dots for p and q with a line segment is called a diagram of M. According to a theorem of Birkhoff (1935) every finite partially ordered set is representable by a diagram. In Figure 1 are represented three partitions of a 7-element set K.

![Figures 1a, b, c.](image-url)