DETERMINATION OF REACTION RATE CONSTANTS IN THE MAMMILLARY SYSTEM*

H. E. Hart†, U. Malik and D. Sugerman
Department of Physics,
City College of the City University of New York,
New York, N.Y. 10031

It is shown that the individual rate constants can be determined for the composite chemical system:

\[A + B_i \rightleftharpoons C_i; \quad i = 1 \ldots N \]

with only measurements of the unbound species, \(A(t) \), required. The dissociation rate constants can be determined by direct analysis of a single steady state tracer study. The association constants then follow from the analysis of stable equilibrium determinations reported earlier (Hart, 1965). An approximate solution when tracer methods are inapplicable is also given.

I. Introduction. Determination of the stability constants and maximum binding capacities in mammillary systems making use of unbound species determinations alone has been reported previously (Hart, 1965).† The methods outlined involve analysis of the equilibrium values obtained in a series of experiments. In many cases of interest, however, it may also be desirable to evaluate the association and dissociation rate constants separately.

In Section II, it will be shown that complete determination of the individual

* This work performed under Contract AEC (30-1)-3936 with the United States Atomic Energy Commission.
† Also, Department of Oncology, Montefiore Hospital and Medical Center.
‡ If explicit knowledge of \(A(t) \), \(B_i(t) \) and \(C_i(t) \) is available then, of course, the system of equations

\[\frac{dC_i(t)}{dt} = K_{at} \cdot A(t) \cdot B_i(t) - K_{Dt} \cdot C_i(t); \quad t = t_1, t_2 \]

permits an immediate solution for \(K_{at} \) and \(K_{Dt} \) by determinants.
reaction rates is possible by appending a single kinetic tracer study. In Section III an approximate solution for three species or less is outlined for those systems where kinetic studies on non-tracer concentrations can be carried out but where sufficiently rapid kinetic tracer determinations are not feasible.

Notations

- K_{ai} = association constant of the ith type site; $i = 1 \ldots N$.
- K_{Di} = dissociation constant of the ith type site; $i = 1 \ldots N$.
- K_i = stability constant of the ith type site $= \frac{K_{ai}}{K_{Di}}$; $i = 1 \ldots N$.
- M_i = mols·liter$^{-1}$ of total binding sites of the ith type.
- $m_i(t)$ = mols·liter$^{-1}$ of binding sites of the ith type unoccupied at time t.
- $M_i - m_i(t)$ = mols·liter$^{-1}$ of occupied sites of the ith type at time t.
- T_j = equilibrium molar concentration of the unbound reacting molecule under condition D_j.
- $T(t)$ = mols·liter$^{-1}$ at time t of the unbound reacting molecule.
- $T^*(t)$ = concentration at time t of the labelled unbound reacting molecule.

II. Tracer Kinetic Method. Consider the reversible reactions:

$$T + m_i \rightleftharpoons (Tm_i); \ i = 1 \ldots N.$$ (1)

It follows directly from chemical kinetics that:

$$\frac{dm_i}{dt} = -[K_{Di} + K_{ai}(T)]m_i + K_{Di}M_i; \ \ \ i = 1 \ldots N.$$ (2)

and

$$\frac{dT}{dt} = - \sum_{i=1}^{N} K_{ai}(T)(m_i) + \sum_{i=1}^{N} K_{Di}(M_i - m_i); \ \ i = 1 \ldots N.$$ (3)

At equilibrium, (2) becomes:

$$\frac{M_i}{m_{ij}} = 1 + K_iT_j.$$ (4)

Since the T_j are measured and M_i and K_i can be calculated, it follows that m_{ij}, the mols·liter$^{-1}$ of available sites of species i under equilibrium condition D_j, can be determined.

Consider the effect of introducing a tracer T^* into any equilibrium state j.

§ The notation conforms to that previously employed in Hart (1965).