BLOCK PLAN FOR A FRACTIONAL 2m FACTORIAL DESIGN
DERIVED FROM A 2r FACTORIAL DESIGN

TERUHIRO SHIRAKURA

(Received Apr. 25, 1984; revised Aug. 10, 1985)

Summary

For a given fractional 2m factorial (2m-FF) design T, the constitution of a block plan to divide T into k (2r-1 < k \leq 2r) blocks with r block factors each at two levels is proposed and investigated. The well-known three norms of the confounding matrix are used as measures for determining a “good” block plan. Some theorems concerning the constitution of a block plan are derived for a 2m-FF design of odd or even resolution. Two norms which may be preferred over the other norm are slightly modified. For each value of N assemblies with 11 \leq N \leq 26, optimum block plans for k=2 blocks with block sizes \lfloor N/2 \rfloor and N-\lfloor N/2 \rfloor minimizing the two norms are presented for A-optimal balanced 2m-FF designs of resolution V given by Srivastava and Chopra (Technometrics, 13, 257-269).

1. Introduction

Consider a 2m factorial experiment with m factors. An assembly (or treatment combination) is represented by an m-rowed vector (j\textsubscript{1}, j\textsubscript{2}, ..., j\textsubscript{m}), where j\textsubscript{t} (level of tth factor) is equal to 0 or 1. As unknown effects, \theta\textsubscript{0}, \theta\textsubscript{t}, and in general, \theta\textsubscript{t_1...t_k} denote the general mean, main effect of tth factor, and k-factor interaction of t\textsubscript{1}, ..., t\textsubscript{k} factors, respectively. For a fixed integer l (1 \leq l \leq m), let \theta be the \nu \times 1 vector composed of effects up to l-factor interactions, where \nu = \sum_{i=0}^{l} \binom{m}{i}, i.e.,

\theta' = (\theta\textsubscript{0}; \theta\textsubscript{1}; \theta\textsubscript{1,1}; \theta\textsubscript{1,2}; ..., \theta\textsubscript{m;1}; \theta\textsubscript{12,...,i}; ..., \theta\textsubscript{m-1,m}; \theta\textsubscript{12,...,i,...,m}).

Assume throughout this paper that (l+1)-factor and higher order interactions are negligible and that the m factors are different from block factors. Let T be a fractional 2m factorial (2m-FF) design which is a

Key words: Confounding matrix, norm, balanced array.
suitable set of N assemblies. Note that the assemblies in T are not always distinct. Using a design T, we consider the estimation of a $\nu \times 1$ vector of linear parametric functions $\theta_0 = C \theta$ for some $\nu \times \nu$ matrix C. For an $N \times 1$ observation vector y_T of T (whose observations are assumed to be independent random variables with common variance σ^2), consider the model

$$E(y_T) = E \theta$$

where $E(\cdot)$ stands for an expected value and E is the $N \times \nu$ design matrix with elements ± 1 (see, e.g., Yamamoto, Shirakura and Kuwada [13]). Suppose that there exists a $\nu \times \nu$ matrix K satisfying $KM = C$ (i.e., rank $M = \text{rank}[M: C']$), which is equivalent to the estimability of θ_0, where $M = E'E$ is called the information matrix of T. The best linear unbiased estimate of θ_0 can then be given by

$$\hat{\theta}_0 = KE'y_T.$$

When $\theta_0 = \theta$, i.e., $C = I$ (identity matrix of appropriate order) and $\nu_0 = \nu$, T corresponds to a 2^m-FF design of resolution 2^{l+1}. In this case, note that the nonsingularity of M is assumed. On the other hand, when $\theta_0 = (\theta_1, \ldots, \theta_m ; \ldots; \theta_{12}, \ldots; \ldots, \theta_{m-1+2\ldots m})'$, i.e., $C = [0 : I : O]$ (0 and O are respectively zero vector and zero matrix of appropriate orders) and $\nu_0 = \nu - 1 - \binom{m}{l}$, T corresponds to a design of resolution 2^l (see Box and Hunter [1]).

In order to get $\hat{\theta}_0$ in (1.2), it is required to make the plots of N assemblies under conditions as homogeneous as possible for the m factors. After planning a design T for $\hat{\theta}_0$, however, it may occur that N observations for T can not be yielded simultaneously by physical, chemical and/or economical reasons, etc. For example, consider an experiment of a certain reaction for a mixture of m raw materials each at two levels. Then, after accommodating the N mixtures in a given T, it may occur that each reaction of them can not be observed under a homogeneous condition. Therefore we consider an arrangement of T in some blocks. The less is the number of assemblies in which we have to experiment simultaneously, the larger is the possibility that we obtain a homogeneous condition. Of course, the number of blocks (say k) should be small compared to N. The problem is to constitute the k blocks such that the estimate $\hat{\theta}_0$ is not sensitive to the block division. The present paper discusses this problem under special situations. For the k blocks, we use a 2^r design with r factors each at two levels which consists of k distinct assemblies ($2^{r-1} < k \leq 2^r$). As block factors, for example, consider experimenter, day and place. Our situation is then the case where the N observations in a given T have to be yielded