Complementation in the lattice of subalgebras of a Boolean algebra

J. B. Remmel

Introduction

In this paper, we shall study the lattice of subalgebras of a Boolean algebra \(\mathcal{B} \). If \(S \) is a subset of \(\mathcal{B} \), then \((S)^*\) will denote the subalgebra of \(\mathcal{B} \) generated by \(S \). If \(B \) and \(C \) are subalgebras of \(\mathcal{B} \), we let \(B + C \) denote \((B \cup C)^*\). The collection of subalgebras of \(\mathcal{B} \) forms a lattice, \(\mathcal{L}(\mathcal{B}) \), under the operations of intersection and sum. We let \(0_{\mathcal{B}} \), \(1_{\mathcal{B}} \) denote the zero and one of \(\mathcal{B} \) and where there is no confusion we shall just write \(0 \) and \(1 \) instead of \(0_{\mathcal{B}} \) and \(1_{\mathcal{B}} \).

We shall explore the question of whether there is a reasonable notion of complement in \(\mathcal{L}(\mathcal{B}) \). We can look to the cases of the lattice of subsets of a given set or to the lattice of subspaces of a given vector space for analogies. If \(S \) is a set and \(A \subseteq S \), then the complement \(A \) is the largest set \(B \subseteq S \) such that \(B \cap A = \emptyset \). If \(V \) is a vector space and \(V_1 \) is a subspace of \(V \), then \(V_2 \) is a complementary subspace of \(V_1 \) and \(V_2 \) is a maximal element in the class of all subspaces \(W \) of \(V \) such that \(V_1 \cap W = \{0\} \) where \(0 \) is the zero vector of \(V \). Thus as a first attempt, we say that if \(C \in \mathcal{L}(\mathcal{B}) \), then \(B \in \mathcal{L}(\mathcal{B}) \) is a complement of \(C \) if \(B \) is a maximal element in the class of \(A \in \mathcal{L}(\mathcal{B}) \) such that \(A \cap C = \{0, 1\} \). Or equivalently,

DEFINITION 1. If \(B \) and \(C \) are subalgebras of a Boolean algebra \(\mathcal{B} \), then \(B \) is a complement of \(C \) if \(B \cap C = \{0, 1\} \) and for any \(x \in \mathcal{B} - B \), \((\{x\} \cup B)^* \cap C = \{0, 1\} \).

Given a subalgebra \(C \in \mathcal{L}(\mathcal{B}) \), a simple application of Zorn’s lemma shows that there is a \(B \in \mathcal{L}(\mathcal{B}) \) such that \(B \) is a complement of \(C \). As is the case with vector spaces, in general a subalgebra \(C \) will not have a unique complement. The main question about our notion of complement is whether or not it is symmetric, that is, does \(B \) being a complement of \(C \) imply that \(C \) is a complement of \(B \)? In Section 1, we shall prove the answer is yes if \(\mathcal{B} \) is the Boolean algebra of finite and cofinite subsets of some set \(S \). In Section 2, we shall show that there are

Presented by G. Grätzer. Received November 1, 1977. Accepted for publication in final form July 31, 1978.
counterexamples in all other Boolean algebras \(\mathcal{B} \), that is, there are subalgebras \(B \) and \(C \) of \(\mathcal{B} \) such that \(B \) is a complement of \(C \) but \(C \) is not a complement of \(B \). Because of the results of Section 2, the following is a stronger notion than complement.

DEFINITION. If \(B \) and \(C \) are subalgebras of \(\mathcal{B} \), then \(B \) is a bicomplement of \(C \) if \(B \) is a complement of \(C \) and \(C \) is a complement of \(B \).

Again it is an easy application of Zorn's lemma to see that in any Boolean algebra, there are nontrivial pairs of subalgebra which are bicomplementary. For if \(A \) is a nontrivial subalgebra of \(\mathcal{B} \), then we let \(B \) be a complement of \(A \) and apply Zorn's lemma to find \(C \supseteq A \) such that \(C \) is a complement of \(B \). Clearly, \(B \) is a bicomplement of \(C \). However given the results of Section 2, it is not a priori clear that for every \(C \in \mathcal{L}(\mathcal{B}) \), there is a \(B \in \mathcal{L}(\mathcal{B}) \) such that \(B \) is a bicomplement of \(C \). In Section 3, we will prove that if \(\mathcal{B} \) is a directed union of countably many Boolean algebras which are Boolean algebras of finite and cofinite subsets of some set \(S \), then every subalgebra of \(\mathcal{B} \) has a bicomplement. In particular, this class of Boolean algebras include all the countable Boolean algebras.

1. **Preliminaries**

Given a Boolean algebra \(\mathcal{B} \), we know by the Stone Representation Theorem that \(\mathcal{B} \) is isomorphic to a field of subsets of a given set. Thus we will implicitly assume we are always dealing with a field of subsets of a given set. We shall let \(\vee, \wedge, \neg, \subseteq \) denote the meet, join, complement, and order relation of the Boolean algebra \(\mathcal{B} \).

Given \(a \in \mathcal{B} \) and \(B \) a subalgebra of \(\mathcal{B} \), one can easily show that any element of \(\langle \{a\} \cup B \rangle^* \) can be written in the form \((a \land b_1) \lor (\neg a \land b_2) \) where \(b_1, b_2 \in B \). We shall use this fact repeatedly.

\(a \in \mathcal{B} \) is an atom of \(\mathcal{B} \) if \(a \neq 0 \) and for any \(b \in \mathcal{B} \), \(0 \leq b \leq a \) implies either \(b = 0 \) or \(b = a \). \(a \in \mathcal{B} \) is atomless if \(a \neq 0 \) and there is no atom \(b \in \mathcal{B} \) such that \(b \leq a \). A Boolean algebra \(\mathcal{B} \) is atomless if \(\mathcal{B} \) contains no atoms. A Boolean algebra \(\mathcal{B} \) is atomic if \(\mathcal{B} \) contains no atomless elements. We let \(\mathcal{A}(\mathcal{B}) \) denote the set of atoms of \(\mathcal{B} \). If \(B \) is a subalgebra of \(\mathcal{B} \), \(\mathcal{A}(B) \) will denote the atoms of \(B \) relative to \(B \), i.e., \(x \in \mathcal{A}(B) \) is an atom in \(B \), but is not necessarily an atom in \(\mathcal{B} \). For any set \(S \), let \(\mathcal{I}(S) \) denote the ideal generated by \(S \). If \(\mathcal{B} \) is an atomic Boolean algebra, the derivative of \(\mathcal{B} \) is the quotient algebra \(\mathcal{B} \mod \mathcal{I}(\mathcal{A}(\mathcal{B})) \). It is a well known theorem of Vaught's [2], that if \(\mathcal{B}_1 \) and \(\mathcal{B}_2 \) are countable atomic Boolean algebras, and \(\mathcal{B}_1 \mod \mathcal{I}(\mathcal{A}(\mathcal{B}_1)) \) is isomorphic to \(\mathcal{B}_2 \mod \mathcal{I}(\mathcal{A}(\mathcal{B}_2)) \) then \(\mathcal{B}_1 \) is