A SUPPLEMENTARY STUDY OF ANISOTROPIC PLASTIC FIELDS
AT A RAPIDLY PROPAGATING PLANE-STRESS CRACK-TIP (I)

Lin Baisong (林拜松)¹

(Received July 15, 1994; Communicated by Xue Dawei)

Abstract

The results in Ref. [1] are not suitable for the cases of \(\beta \geq 2 \). For this reason, by using the methods in Ref. [1] and Ref. [2], we derive the general expressions of anisotropic plastic fields at a rapidly propagating plane-stress crack-tip for both the cases of \(\beta = 2 \) and \(\beta > 2 \).

Key words rapid propagation, plane-stress, crack-tip, anisotropic plastic fields, plastic zone, general expressions

I. Introduction

We know that the results in Ref. [1] are not suitable for the cases of \(\beta \geq 2 \). For this reason, we use the methods in Ref. [1] and Ref. [2] to study the anisotropic plastic fields at a rapidly propagating plane-stress crack-tip for the cases of \(\beta \geq 2 \). All the stress components at a rapidly propagating crack-tip in an elastic perfectly-plastic material are the functions of \(\theta \) only. By using this condition and the equations of steady-state motion, Hill yield conditions for both the cases of \(\beta = 2 \) and \(\beta > 2 \) and elastic-plastic constitutional equations, we derive the general equations of anisotropic plastic fields at a rapidly propagating plane-stress crack-tip for both the cases of \(\beta = 2 \) and \(\beta > 2 \). Applying these general expressions to two particular cases of anisotropic plasticity, the general expressions of anisotropic plastic fields at a rapidly propagating plane-stress crack-tip for the two particular cases of both the cases of \(\beta = 2 \) and \(\beta > 2 \).

Fig. 1

Fig. 1 shows that the geometry of a plane-stress crack-tip which propagates rapidly along the crack-line. \((x_1,y_1,z_1)\) and \((x,y,z)\) are the stationary and the moving coordinate systems, respectively. The moving coordinate system has its origin at the rapidly propagating plane-stress crack-tip. Let the speed of the crack-tip be \(c = \text{const} \). Assuming that the crack is in the steady-state motion, then the following relations:

¹ Central-South University of Technology, Changsha 430083, P. R. China
are obtained. From now on, we take
\[\alpha = \frac{c}{\sqrt{\mu/\rho}} \leq 1 \] (1.2)
where \(c = \sqrt{\mu/\rho} \) defines the speed of shear waves in an elastic solid with shear modulus \(\mu \) and mass density \(\rho \).

II. General Expressions for the Case of \(\beta = 2 \)

For the case of \(\beta = 2 \), in the moving coordinate system \(Oxyz \), we have the following system of partial differential equation:

\[
\begin{align*}
X \frac{\partial \sigma_x}{\partial x} + X \frac{\partial \sigma_x}{\partial y} + T \frac{\partial \sigma_{xy}}{\partial x} &= \rho c^2 \frac{\partial u_x}{\partial x} = 0 \\
Y \frac{\partial \sigma_x}{\partial y} + Y \frac{\partial \sigma_x}{\partial y} + T \frac{\partial \sigma_{xy}}{\partial x} &= \rho c^2 \frac{\partial u_x}{\partial x} = 0 \\
X \frac{\partial u_x}{\partial x} + Y \frac{\partial u_x}{\partial y} - \left(D_1 \frac{\partial \sigma_x}{\partial x} + D_2 \frac{\partial \sigma_x}{\partial x} \right) &= 0 \\
X \frac{\partial \sigma_{xy}}{\partial x} - 4T \sigma_x \frac{\partial u_x}{\partial y} - Y \frac{\partial u_y}{\partial y} - 4T \sigma_x \frac{\partial u_x}{\partial x} &= 0 \\
-X \frac{\partial \sigma_{xy}}{\partial x} + D_3 \frac{\partial \sigma_x}{\partial x} + D_4 \frac{\partial \sigma_{xy}}{\partial x} &= 0
\end{align*}
\] (2.1)

where
\[
\sigma_x = \frac{1}{2} \left(\frac{\sigma_x + \sigma_y}{X} \right), \quad \sigma_y = \frac{1}{2} \left(\frac{\sigma_x - \sigma_y}{Y} \right), \quad \sigma_{xy} = \frac{\tau_{xy}}{Y} \] (2.2)
\[
D_1 = \frac{X^2 + Y^2 - 2\nu XY}{E}, \quad D_2 = \frac{X^2 - Y^2}{E}, \quad D_3 = \frac{X^2 + Y^2 + 2\nu XY}{E}, \quad D_4 = \frac{\tau_{xy}}{\mu}
\] (2.3)

The Hill yield condition for the case of \(\beta = 2 \) is
\[4\sigma_x^2 + \sigma_{xy}^2 = 1 \] (2.4)
If we take
\[\sigma_x = -\frac{1}{2} \cos \varphi, \quad \sigma_{xy} = \sin \varphi \] (2.5)
Then (2.4) is identically satisfied. Where \(\varphi \) is the function of \(\theta \) only.

We know that \(\sigma_x, \sigma_y, \sigma_{xy}, u_x \) and \(v_y \) are the functions of \(\theta \) only. By substituting (2.5) into (2.1) and using the following transformation:
\[\frac{\partial}{\partial x} = \frac{-\sin \theta}{r} \frac{d}{d\theta}, \quad \frac{\partial}{\partial y} = \frac{-\cos \theta}{r} \frac{d}{d\theta} \] (2.6)