A finite algebra A with $SP(A)$ not elementary

RALPH McKENZIE\(^{(1)}\)

Given a finite algebra A we have the variety generated by A, or $\{A\}^e$, and the quasi-variety generated by A, or $\{A\}^q$. The former is identical with $HSP(A)$, the latter with $SP(A)$. Baker proved that if $\{A\}^e$ is congruence-distributive, then it is finitely axiomatizable. (We assume that A has a finite similarity type.) All proofs to date of Baker's theorem rely in part on a result of Jónsson: if A is finite and $\{A\}^e$ congruence-distributive, then $\{A\}^q = \mathcal{B}^q$ where \mathcal{B} is a finite set of finite algebras. Now if it were true that whenever \mathcal{B} is a finite set of finite algebras, then \mathcal{B}^q is finitely axiomatizable, it would put Baker's theorem in a radically new light. However, it is false, as we shall show.

A still open problem (due to Jónsson): Suppose that \mathcal{B} is a finite set of finite algebras and $\mathcal{B}^e = \mathcal{B}^q$. Does it follow that \mathcal{B}^e is finitely axiomatizable?

Our construction is as follows. Given any graph $G = \langle V, E \rangle$ with vertex-set V, edge-set E, let $A(G)$ be the algebra $\langle A(G), R, S, + \rangle$ with universe $A(G) = \{R, S\} \cup V \cup ((V \times V) \setminus E)$ (disjoint union)

and operations R, S (constants, $R \neq S$), + (binary):

$$x + y = \begin{cases} (x, y) & \text{if } (x, y) \in (V \times V) \setminus E \\ S & \text{if } (x, y) \in E \\ R & \text{otherwise.} \end{cases}$$

Now let $G = \langle V, E \rangle$ be the graph pictured below:

![Figure 1](image_url)

\(^{1}\) Research supported by NSF Grant MPS 74-23878.

Presented by G. Grätzer. Received April 30, 1976. Accepted for publication in final form November 9, 1976.
and for each integer \(n \geq 3 \), let \(C_n \) be the \(n \)-cycle

\[
\langle \{0, 1, \ldots, n-1\}, \{(i, j) : j \equiv i + 1 \pmod{n} \} \rangle.
\]

THEOREM. \(\{A(G)\}^q \) is not finitely axiomatizable.

If it were, then it could be defined by a single universal sentence, hence there would exist an \(n \) such that any \(B \) belongs to \(SP(A(G)) \) as soon as all \(n-1 \)-generated subalgebras of \(B \) are in \(SP(A(G)) \). But we have

LEMMA. For \(n \geq 3 \), \(A(C_n) \not\in SP(A(G)) \); each \(n-1 \)-generated subalgebra of \(A(C_n) \) belongs to \(SP(A(G)) \).

Notice that \(\{A(G)\}^F \) is finitely axiomatizable, for the following identities serve:

\[
R + x \equiv x + R \equiv R, \quad x + (y + z) \equiv R
\]

\[
S + x \equiv x + S \equiv R, \quad (x + y) + z \equiv R.
\]

Before proving the lemma, we observe a corollary that may be of interest to the model-theorists.

COROLLARY. There exists a complete \(\kappa \)-categorical theory \(T \) of finite type such that the universal sentences valid in \(T \) are not finitely axiomatizable.

Let \(T \) be the theory of the Boolean power \(A[B] \) where \(A = A(G) \) and \(B \) is the countable atomless Boolean algebra. It is known that \(T \) is complete and \(\kappa \)-categorical (see [2]). But the universal closure of the model class of \(T \) is simply \(SP(A(G)) \).

Proof of the lemma. That \(A(C_n) \not\in SP(A(G)) \) is easy. If \(h \) maps the first algebra homomorphically into the second, then \(h(S) = S \); hence if \((x, y) \) is an edge in \(C_n \) then \(x + y = S \) and \(h(x) + h(y) = S \), so \((h(x), h(y)) \) is an edge in \(G \), and moreover \(h(x), h(y) \in V \). It follows that \(h \upharpoonright n \) maps \(C_n \) homomorphically into \(G \). Looking at Figure 1, we easily convince ourselves that \(h(0) \neq h(2) \) must hold. Thus no homomorphism from \(A(C_n) \) into \(A(G) \) separates \(0, 2 \).

Upon discarding one point of \(C_n \) from \(A(C_n) \) one obtains a subalgebra of \(A(C_n) \). All these subalgebras are isomorphic one to another, and every \(n-1 \)-generated subalgebra of \(A(C_n) \) is included in one of them. So to conclude the proof, we take for \(B \) the subalgebra of \(A(C_n) \) whose universe is \(B = A(C_n) \setminus \{0\} \) and show that the homomorphisms of \(B \) into \(A(G) \) separate the points of \(B \).