Let $\varphi^0 \in \Omega_\varphi$. Then we have a sequence $\{t_n\}_{n=1}^\infty$ such that

$$\lim_{n \to \infty} t_n = +\infty \quad \text{and} \quad \lim_{n \to \infty} \varphi(t_n, \varphi) = \varphi^0.$$

Consider a sequence of functions $\varphi(t + t_n, \varphi)$ each of which is defined for $t \in [-t_n, +\infty)$. Since the solution $\varphi(t, \varphi)$ is continuous in φ,

$$\lim_{n \to \infty} \varphi(t + t_n, \varphi) = \lim_{n \to \infty} \varphi(t, \varphi(t_n, \varphi)) = \varphi^0(\varphi^0) \subset \Omega_\varphi.$$

Consequently,

$$\Re(\lambda_j(\varphi^0)) < 0 \Rightarrow \Re(\lambda_j(\varphi(t, \varphi^0))) \leq 0 \Rightarrow \Re\left(\lambda_j\left[\lim_{n \to \infty} \varphi(t, \varphi(t_n, \varphi))\right]\right) < \alpha$$

$$\Rightarrow \Re\left(\lambda_j\left[\lim_{n \to \infty} \varphi(t + t_n, \varphi)\right]\right) < 0.$$

Thus, condition (3) is equivalent to the condition

$$\lim_{t \to +\infty} \sup_{\varphi \in \mathcal{S}_m, \ j = 1, \ldots, \ n} \left[\Re(\lambda_j(P(\varphi(\varphi))))\right] < 0.$$ (4)

Moreover, one can indicate time $T > 0$ such that, for all $t \geq T$, condition (4) is satisfied for any $\varphi \in \mathcal{S}_m$.

(i) Denote

$$-\beta = \max_{j, \varphi \in \Omega} \Re(\lambda_j(P(\varphi))) < 0, \quad -\gamma = -\beta + \varepsilon_1,$$

where $\varepsilon_1 > 0$ is chosen so that $-\gamma < 0$. Then the following estimate (see, e.g., [1]) is true:

$$\|e^{P(\varphi(\varphi))(t-T)}\| \leq D_1 e^{-\gamma(t-T)} = \eta(t-T),$$

$$D_1 = D_1(\varepsilon_1) = \text{const} > 0.$$

We choose λ so that the condition $-\gamma < -\lambda < 0$ is satisfied. Then condition (i) of Theorem 1 is satisfied in the form

$$\|e^{P(\varphi(\varphi))(t-T)}\| = D_1 e^{-\gamma(t-T)} \leq D_1 e^{-\lambda(t-T)}.$$ (ii) Consider condition (ii) of Theorem 1. It is known that the matrix $P(\varphi)$, $\varphi \in \mathcal{S}_m$, satisfies the Lipschitz condition with respect to $\varphi \in \mathcal{S}_m$, i.e.,

$$\|P(\varphi) - P(\psi)\| \leq k\|\varphi - \psi\|,$$

where $\varphi, \psi \in \mathcal{S}_m$ and $k > 0$. Since $\varphi = \varepsilon \alpha(\varphi)$, we have
where

\[K_1 = \max_{\phi \in S_m} \| a(\phi) \|, \]

i.e., condition (ii) of Theorem 1 is satisfied with the function

\[\alpha(t-s) \equiv \varepsilon K_1 K|t-s|. \]

(iii) Consider the condition

\[\int_{0}^{+\infty} e^{\lambda z} \alpha(z) \eta(z) dz < 1. \]

In the case under consideration, this condition takes the form

\[\varepsilon K_1 K D_1 \int_{0}^{+\infty} z e^{(\lambda-\gamma)z} dz < 1. \]

Since \(\lambda - \gamma < 0 \), we have

\[\int_{0}^{+\infty} z e^{(\lambda-\gamma)z} dz = \frac{1}{\lambda-\gamma} e^{(\lambda-\gamma)z} \bigg|_{0}^{+\infty} = \frac{1}{\lambda-\gamma} \int_{0}^{+\infty} e^{(\lambda-\gamma)z} dz = \frac{1}{\gamma-\lambda} \int_{0}^{+\infty} e^{(\lambda-\gamma)z} dz = \frac{1}{\gamma-\lambda} \left[\frac{1}{\lambda-\gamma} e^{(\lambda-\gamma)z} \bigg|_{0}^{+\infty} \right] = \frac{1}{(\gamma-\lambda)^2}. \]

By substituting the obtained result in (5), we get

\[\frac{\varepsilon K_1 K D_1}{(\gamma-\lambda)^2} < 1 \Rightarrow \varepsilon K_1 K D_1 < (\gamma-\lambda)^2 \Rightarrow -\gamma + \sqrt{\varepsilon K_1 K D_1} < -\lambda < 0. \]

The last inequality implies the following condition for the existence of the parameter \(-\lambda < 0\):

\[-\gamma + \sqrt{\varepsilon K_1 K D_1} < 0 \Rightarrow \varepsilon K_1 K D_1 < \gamma^2 \Rightarrow \varepsilon < \frac{\gamma^2}{K_1 K D_1}. \]

Corollary. In order that the conditions of Theorem 1 be satisfied and the matriciant of system (2), beginning with a certain \(T > 0 \), satisfy the estimate

\[\| \Omega_T'(\varphi) \| \leq D_1 e^{-\lambda(t-T)}, \]