The axisymmetrical dynamic problem of the theory of elasticity with mixed boundary conditions was studied in [1-3]. In this article it will be stated in a more general formulation. The methods of investigation will also be rather different.

Let us consider perturbed motion of an ideal elastic medium occupying the half-space $z > 0$, due to an axysymmetric displacement of a local part of the surface $z = 0$, following a given law.

This motion is characterized by a system of wave equations [1]:

\[
\begin{align*}
\frac{\partial^2 \varphi}{\partial r^2} + \frac{1}{r} \frac{\partial \varphi}{\partial r} + \frac{\partial^2 \varphi}{\partial z^2} &= \frac{1}{c^2} \frac{\partial^2 \varphi}{\partial t^2}; \\
\frac{\partial^2 \psi}{\partial r^2} + \frac{1}{r} \frac{\partial \psi}{\partial r} - \frac{\psi}{r^2} + \frac{\partial^2 \psi}{\partial z^2} &= \frac{1}{b^2} \frac{\partial^2 \psi}{\partial t^2}.
\end{align*}
\]

Here φ and ψ are the elastic potentials; c and b are velocities of propagation of longitudinal and transverse waves,

\[
c = \sqrt{\frac{\lambda + 2\mu}{\rho_0}}, \quad b = \sqrt{\frac{\mu}{\rho_0}};
\]

λ and μ are the Lamé constants; and ρ_0 is the density of the medium.

The relations between the elastic potentials $\varphi(t, z, t)$ and $\psi(t, z, t)$, on the one hand, and the displacements $u(t, z, t)$ of points in the half-space (in the direction of the r axis) and $v(t, z, t)$ (in the direction of the z axis) and the normal stresses* $\sigma_{zz}(t, z, t)$ and tangential stresses $\tau(t, z, t)$, on the other, are governed by well-known equations in the theory of elasticity [4]:

\[
\begin{align*}
u &= \frac{\partial \varphi}{\partial r} - \frac{\partial \psi}{\partial z}; \\
v &= \frac{\partial \varphi}{\partial z} + \frac{\partial \psi}{\partial r} + \frac{\psi}{r}; \\
\tau &= 2\mu \left[\frac{\partial^2 \varphi}{\partial z^2} + \frac{\partial^2 \psi}{\partial z \partial r} + \frac{1}{r} \frac{\partial \psi}{\partial z} \right] + \lambda \left[\frac{\partial^2 \varphi}{\partial z^2} + \frac{\partial^2 \psi}{\partial r^2} + \frac{1}{r} \frac{\partial \psi}{\partial r} \right]; \\
\tau &= \mu \left[\frac{\partial^2 \varphi}{\partial r^2} - \frac{\partial^2 \psi}{\partial z^2} + 2 \frac{\partial^2 \varphi}{\partial z \partial r} + \frac{1}{r} \frac{\partial \psi}{\partial r} - \frac{\psi}{r^2} \right].
\end{align*}
\]

We shall take zero initial conditions. When $t = 0$

*In the future we shall omit the subscripts of the normal stresses.
In addition, we shall assume that the elastic potentials \(\varphi \) and \(\psi \) obey the following boundary conditions:

\[
\begin{align*}
\varphi & \to 0; \quad \psi \to 0 \\
z & \to \infty \quad z \to \infty \\
r \varphi I_0 (r \xi) & \to 0; \quad r \psi I_1 (r \psi) \to 0 \\
r & \to 0 \\
r & \to \infty
\end{align*}
\]

To solve the problem we shall use integral transformations. Following [2, 5, 6], let us apply the first- and second-order Hamel transformations in the coordinate \(r \) and the Laplace transformation in the time \(t \) to the system (1)-(2). Then we get

\[
\begin{align*}
\frac{d^2 \varphi}{d z^2} - \left(\frac{\xi^2}{c^2} + \frac{s^2}{b^2} \right) \varphi &= 0; \\
\frac{d^2 \psi}{d z^2} - \left(\frac{\xi^2}{c^2} + \frac{s^2}{b^2} \right) \psi &= 0.
\end{align*}
\]

Here,

\[
\begin{align*}
\varphi (\xi, s, z) &= \int_0^\infty \tilde{\varphi} (r, s, z) I_0 (r \xi) r dr; \quad \tilde{\varphi} (r, s, z) = \varphi (r, t, z); \\
\psi (\xi, s, z) &= \int_0^\infty \tilde{\psi} (r, s, z) I_1 (r \xi) r dr; \quad \tilde{\psi} (r, s, z) = \psi (r, t, z).
\end{align*}
\]

The solutions to (10) and (11) with conditions (8) and (9) are

\[
\begin{align*}
\varphi (\xi, s, z) &= A (\xi, s) \exp \left(-z \sqrt{\xi^2 + s^2/b^2} \right); \\
\psi (\xi, s, z) &= B (\xi, s) \exp \left(-z \sqrt{\xi^2 + s^2/b^2} \right).
\end{align*}
\]

On the basis of (13), (14), and (4)-(7), the transformants of the displacements and stresses are expressed in terms of the functions \(A(\xi, s) \), \(B(\xi, s) \) as follows:

\[
\begin{align*}
\overline{v} (\xi, s, z) &= \mu \left[2 \xi A (\xi, s) \sqrt{\xi^2 + s^2/b^2} \exp \left(-z \sqrt{\xi^2 + s^2/b^2} \right) \\
&- B (\xi, s) \left(2 \xi^2 + s^2/b^2 \right) \exp \left(-z \sqrt{\xi^2 + s^2/b^2} \right) \right]; \\
\sigma (\xi, s, z) &= \mu \left[A (\xi, s) \left(s^2/b^2 + 2 \xi^2 \right) \exp \left(-z \sqrt{\xi^2 + s^2/b^2} \right) \\
&- B (\xi, s) 2 \xi \sqrt{\xi^2 + s^2/b^2} \exp \left(-z \sqrt{\xi^2 + s^2/b^2} \right) \right]; \\
\overline{u} (\xi, s, z) &= -\xi A (\xi, s) \exp \left(-z \sqrt{\xi^2 + s^2/b^2} \right) + B (\xi, s) \sqrt{\xi^2 + s^2/b^2} \exp \left(-z \sqrt{\xi^2 + s^2/b^2} \right); \\
\overline{\sigma} (\xi, s, z) &= -\sqrt{\xi^2 + s^2/b^2} A (\xi, s) \exp \left(-z \sqrt{\xi^2 + s^2/b^2} \right) + \xi B (\xi, s) \exp \left(-z \sqrt{\xi^2 + s^2/b^2} \right).
\end{align*}
\]

Putting \(z = 0 \), we determine the functions \(A(\xi, s) \) and \(B(\xi, s) \) in terms of the transformants of the stresses:

\[
A (\xi, s) = \frac{1}{\mu} \tau (\xi, s) \left(2 \xi^2 + s^2/b^2 \right) - \frac{1}{\mu} \overline{\tau} (\xi, s) \sqrt{\xi^2 + s^2/b^2} \\
B (\xi, s) = \frac{1}{\mu} \overline{\sigma} (\xi, s) 2 \xi \sqrt{\xi^2 + s^2/b^2} - \frac{1}{\mu} \tau (\xi, s) \left(s^2/b^2 + 2 \xi^2 \right).
\]