Correlations Between Zeros of a Random Polynomial

Pavel Bleher and Xiaojun Di

Received November 13, 1996

We obtain exact analytical expressions for correlations between real zeros of the Kac random polynomial. We show that the zeros in the interval (-1, 1) are asymptotically independent of the zeros outside of this interval, and that the straightened zeros have the same limit-translation-invariant correlations. Then we calculate the correlations between the straightened zeros of the O(1) random polynomial.

KEY WORDS: Real random polynomials; correlations between zeros; scaling limit; determinants of block matrices.

1. INTRODUCTION

Let \(f_n(t) \) be a real random polynomial of degree \(n \),

\[
f_n(t) = c_0 + c_1 t + \cdots + c_n t^n
\]

where \(c_0, c_1, \ldots, c_n \) are independent real random variables. Distribution of zeros for various classes of random polynomials is studied in the classical papers by Bloch and Polya [BP], Littlewood and Offord [LO], Erdős and Offord [EO], Erdős and Turán [ET], and Kac [K1-K3]. We will assume that the coefficients \(c_0, c_1, \ldots, c_n \) are normally distributed with

\[
E c_j = 0, \quad E c_j^2 = \sigma_j^2
\]

In the case when

\[
\sigma_j^2 = 1
\]
$f_n(t)$ is the Kac random polynomial. Another interesting case is when

$$\sigma_j^n = \binom{n}{j}$$

As is pointed out by Edelman and Kostlan [EK], "this particular random polynomial is probably the more natural definition of a random polynomial." We call this polynomial the $O(1)$ random polynomial because its m-point joint probability distribution of zeros is $O(1)$-invariant for all m (see Section 5 below). The $O(1)$ random polynomial can be viewed as the Majorana spin state [Maj] with real random coefficients, and it models a chaotic spin wavefunction in the Majorana representation. See the papers by Leboeuf [Lebl, Leb2], Leboeuf and Shukla [LS], Bogomolny, Bohigas, and Leboeuf [BBL2], and Hannay [Han], where the SU(2) and some other random polynomials are introduced and studied, that represent the Majorana spin states with complex random coefficients.

Let \{\tau_1, \ldots, \tau_k\} be the set of real zeros of $f_n(t)$. Consider the distribution function of the real zeros,

$$P_n(t) = \text{E} \# \{ j : \tau_j \leq t \}$$

where the mathematical expectation is taken with respect to the joint distribution of the coefficients c_0, \ldots, c_n. Let

$$p_n(t) = P_n'(t)$$

be the density function. By the Kac formula (see, e.g., [K3]),

$$p_n(t) = \frac{\sqrt{A_n(t) C_n(t) - B_n^2(t)}}{\pi A_n(t)}$$

(1.3)

where

$$A_n(t) = \sum_{j=0}^{n} \sigma_j^n t^{2j}$$

$$B_n(t) = \sum_{j=1}^{n} \frac{j \sigma_j^n t^{2j-1}}{2} = \frac{A_n'(t)}{2}$$

$$C_n(t) = \sum_{j=1}^{n} j^2 \sigma_j^n t^{2j-2} = \frac{A_n''(t)}{4} + \frac{A_n'(t)}{4t}$$

(1.4)

The derivation of (1.3) by Kac is rather complex. A short proof of (1.3) is given in the paper [EK] by Edelman and Kostlan. See also the papers by