Some Essential Properties of $Q_p(\partial \Delta)$-Spaces

Jie Xiao

Communicated by John Benedetto

Abstract. For $p \in (-\infty, \infty)$, let $Q_p(\partial \Delta)$ be the space of all complex-valued functions f on the unit circle $\partial \Delta$ satisfying

$$\sup_{I \subset \partial \Delta} |I|^{1-p} \int_I \int_I \frac{|f(z) - f(w)|^2}{|z-w|^{2-p}} |dz||dw| < \infty,$$

where the supremum is taken over all subarcs $I \subset \partial \Delta$ with the arclength $|I|$. In this paper, we consider some essential properties of $Q_p(\partial \Delta)$. We first show that if $p > 1$, then $Q_p(\partial \Delta) = \text{BMO}(\partial \Delta)$, the space of complex-valued functions with bounded mean oscillation on $\partial \Delta$. Second, we prove that a function belongs to $Q_p(\partial \Delta)$ if and only if it is Mobius bounded in the Sobolev space $L^2_p(\partial \Delta)$. Finally, a characterization of $Q_p(\partial \Delta)$ is given via wavelets.

1. Introduction

Throughout this paper, suppose that Δ, $\tilde{\Delta}$, and $\partial \Delta$ are the open unit disk, the closed unit disk, and the unit circle in the finite complex plane \mathbb{C}. For $p \in (-\infty, \infty)$, let $Q_p(\partial \Delta)$ be the space of all Lebesgue measurable functions $f : \partial \Delta \to \mathbb{C}$ with

$$\|f\|_{Q_p(\partial \Delta)} = \sup_{I \subset \partial \Delta} |I|^{-p} \int_I \int_I \frac{|f(z) - f(w)|^2}{|z-w|^{2-p}} |dz||dw|^{1/2} < \infty,$$

where the supremum is taken over all subarcs $I \subset \partial \Delta$ of the arclength $|I|$. Note that if $p = 2$, then $Q_p(\partial \Delta) = \text{BMO}(\partial \Delta)$, John–Nirenberg's space of functions having bounded mean oscillation on $\partial \Delta$. A Lebesgue measurable function $f : \partial \Delta \to \mathbb{C}$ is in $\text{BMO}(\partial \Delta)$ [8] if and only if

$$\|f\|_{\text{BMO}(\partial \Delta)} \equiv \sup_{I \subset \partial \Delta} |I|^{-1} \int_I |f(z) - f_I|^2 |dz|^{1/2} < \infty,$$

Math Subject Classifications. 42A45, 46E15.
Keywords and Phrases. $Q_p(\partial \Delta)$-space, Sobolev space, Möbius boundedness, wavelet.
Acknowledgements and Notes. This research was supported by the AVH-foundation of Germany, the NNSF of China, and the SI of Sweden.
where the supremum ranges over all subarcs \(I \subset \partial \Delta \) and \(f_I \) stand for the average of \(f \) over \(I \)

\[
f_I = \frac{1}{|I|} \int_I f(z) |dz|. \]

Recall that the space \(Q_p(\partial \Delta) \), \(p \in (0, 1) \) was introduced in [5] (there it was written as \(Q'_p \)) when Essén and Xiao studied the boundary behavior of the holomorphic \(Q_p \)-space [1], which is the set of all holomorphic functions \(f \) on \(\Delta \) obeying

\[
\|f\|_{Q_p} = \sup_{w \in \Delta} \left[\int_{\Delta} |f'(z)|^p \left[1 - \left| \phi_w(z) \right|^2 \right]^{\frac{p}{2}} dxdy \right]^{\frac{1}{p}} < \infty, \quad z = x + iy. \tag{1.3} \]

Here and henceforth,

\[
\phi_w(z) = \frac{w - z}{1 - \overline{w}z} \tag{1.4} \]

is a Möbius transform sending \(w \) to 0, and \(dxdy (z = x + iy) \) means the two-dimensional Lebesgue measure on \(\Delta \). Later on, Poisson extension to \(\Delta \), \(\bar{\partial} \)-equations, and a Fefferman–Stein type decomposition of \(Q_p(\partial \Delta) \), \(p \in (0, 1) \) were established by Nicolau and Xiao in [11]. As a continuation of [5], Janson discussed the dyadic analog of \(Q_p(\partial \Delta) \), \(p \in (0, 1) \) [7].

The major purpose of the present paper is to investigate some essential properties of \(Q_p(\partial \Delta) \). First, in Section 2 we show that \(Q_p(\partial \Delta) \) is nondecreasing with \(p \), in particular \(Q_1(\partial \Delta) = BMO(\partial \Delta) \) or \(C \) when \(p > 1 \) or \(p < -1 \). Next, in Section 3 we reveal that \(Q_p(\partial \Delta) \) is a Möbius bounded subspace of the Sobolev space on \(\partial \Delta \). Finally, we give a description of \(Q_p(\partial \Delta) \) in terms of wavelets.

Throughout this paper, the letters \(C \) and \(c \) denote different positive constants which are not necessarily the same from line to line. Moreover, \(A \approx B \) means that there are two constants \(C \) and \(c \) independent of both \(A \) and \(B \) to ensure \(cA \leq B \leq CA \). Also, for an \(r \in (0, \infty) \) and a subarc \(I \), \(rI \) represents the subarc with the same center as \(I \) and with the length \(r|I| \).

2. Monotonicity

In this section, we focus on the monotonicity of \(Q_p(\partial \Delta) \) and discover that the case \(p \in (0, 1] \) is of independent interest.

Theorem 1.

Let \(p \in (-\infty, \infty) \). Then \(Q_p(\partial \Delta) \) is nondecreasing with \(p \). In particular,

(i) If \(p \in (-\infty, -1] \), then \(Q_p(\partial \Delta) = C \).

(ii) If \(-1 < p_1 \neq p_2 \leq 1 \), then \(Q_{p_1}(\partial \Delta) \neq Q_{p_2}(\partial \Delta) \) and \(Q_1(\partial \Delta) \neq BMO(\partial \Delta) \).

(iii) If \(p \in (1, \infty) \), then \(Q_p(\partial \Delta) = BMO(\partial \Delta) \).

Proof. Let \(p_1 < p_2 \). If \(f \in Q_{p_1}(\partial \Delta) \), then for any subarc \(I \subset \partial \Delta \),

\[
\int_I \int_I \frac{|f(z) - f(w)|^2}{|z - w|^{2-p_2}} |dz| |dw| \leq |I|^{p_2-p_1} \int_I \int_I \frac{|f(z) - f(w)|^2}{|z - w|^{2-p_1}} |dz| |dw| \leq |I|^{p_2} \|f\|^2_{Q_{p_1}(\partial \Delta)},
\]

namely, \(f \in Q_{p_2}(\partial \Delta) \). So, \(Q_{p_1}(\partial \Delta) \subset Q_{p_2}(\partial \Delta) \).