OPTIMAL CONTROL OVER EVOLUTION STOCHASTIC SYSTEMS
AND ITS APPLICATION TO STOCHASTIC MODELS
OF FINANCIAL MATHEMATICS

A. V. Svishchuk and A. G. Burdeinyi

UDC 519.21

We consider problems of optimal stabilization of controlled evolution stochastic systems in semi-Markov media and their application to financial stochastic models.

1. Controlled Evolution Stochastic Systems

Consider controlled systems of the form

$$dS(t) = \mu(x(t), S(t), u)dt + \sigma(x(t), S(t), u)dw(t),$$

where $x(t)$ is a semi-Markov process, $\mu(x, s, u)$ and $\sigma(x, s, u)$ are functions continuous in the collection of variables on $X \times R \times U$, (X, \mathcal{X}) is a measurable phase space of $x(t)$, U is a class of control, $u \in U$ is a scalar control parameter, and $w(t)$ is a Wiener process. We assume that the control u in (1) depends on $S(t)$ and $x(t)$, i.e., $u \equiv u(S(t), x(t))$. Then $(S(t), x(t), \gamma(t))$ is a Markov process; here, $\gamma(t) = t - \tau_{v(t)}$, $v(t) = \max \{n: \tau_n \leq t\}$, $\tau_n = \sum_{k=1}^{n} \theta_k$, $x(t) = x_{v(t)}$, and $\{x_n, \theta_n, n \geq 0\}$ is a Markov renewal process [1].

A function $u = u(s, x)$ is called admissible if the coefficients $\mu(x, s, u)$ and $\sigma(x, s, u)$ are continuous, have first derivatives with respect to s, and satisfy the condition $u(0, x) = 0 \forall x \in X$. We assume that U is the class of admissible controls. Every function (admissible control) $u \in U$ is associated with a process $(S^u(t), x(t))$ that is a solution of Eq. (1) with the initial conditions $S^u(0) = s$ and $x(0) = 0$.

By analogy with the deterministic case [2], we consider the following problems of stabilization by an admissible control $u \in U$:

1. Find an admissible control $u = u_0(s, x)$ such that, for $u = u_0(s, x)$, Eq. (1) is asymptotically (exponentially) stable. This is the problem of asymptotic stabilization [3, 4].

2. Find an admissible control $u = u_0(s, x)$ that minimizes the functional of the quality criterion

$$G^u_x(u) = \int_0^\infty M_x K(S^u_x(t), u(S^u_x(t), x(t))), x(t))dt,$$

where $K(s, u, x) \geq 0$, $s \in R$, $u \in U$. This is the problem of optimal stabilization in the sense of the quality criterion under consideration [3, 4].

In what follows, we assume that the quality criteria satisfy the following condition: For any $u \in U$, there exists $p > 0$ such that

$$K(s, u, x) \geq c(x)|s|^p,$$

where $c(x)$ is a positive bounded function.
Under condition (2), both problems of stabilization are closely connected, namely, if a control $u_0(s, x)$ solves problem 2 for the function $K(s, u, x)$ from (2), then

$$\lim_{t \to \infty} M_x \left| S_{x_0}^t (t) \right|^p = 0 \quad \forall x \in X.$$

Under certain additional conditions, asymptotic and exponential stability follows from (3).

2. Bellman Principle for Evolution Stochastic Systems

In this section, we prove a theorem that is a modification of the Bellman principle for the case of problems of optimal stabilization of stochastic differential equations with semi-Markov switchings.

Let $V(s, x, t)$ be a function from the class $C^2(R \times X \times R_+)$ As is known [1], $y(t) = (x(t), t - \tau_{v(t)})$ is a Markov process in the space $Y = X \times R$ with the infinitesimal operator

$$Qf(t, x) = \frac{d}{dt} f(t, x) + \frac{g_x(t)}{G_x(t)} \left[Pf(0, x) - f(t, x) \right] \quad \forall f(t, x) \in C^1(R_+ \times X),$$

$$G_x(t) = 1 - G_x(t), \quad g_x(t) = \frac{dG_x(t)}{dt}, \quad g_x(0) \neq 0,$$

$$G_x(t) = P \{ \theta_{n+1} \leq t \mid x_n = x \}, \quad P \text{ is the operator of transition probability } P(x, A) \text{ of the Markov chain } (x_n, n \geq 0), \quad P(x, A) = P \{ x_{m+1} \in A \mid x_n = x \}, x \in X, A \in \mathcal{F}.$$

Thus, $(S(t), y(t))$ is a Markov process in the space $R \times X \times R_+$ with the infinitesimal operator

$$L_u = \mu(x, s, u) \frac{d}{ds} + \frac{1}{2} G_x^2(x, s, u) \frac{d^2}{ds^2} + Q.$$

Theorem 1. Suppose that there exists a positive-definite function $V_0(s, x, t) \in C^2(R \times X \times R_+)$ and a function $u_0(s, x) \in U$ that satisfy the following conditions for all $s \in R$ and $u \in U$ and certain positive constants p, n, k_1, k_2:

$$V_0(s, x, t) \leq k_1 |s|^p, \quad \frac{\partial V_0}{\partial s} \leq k_1 (1 + |s|^{p-1}),$$

$$L_{u_0} V_0(s, x, t) + K(s, u_0(s, x), x) \equiv 0,$$

$$L_u V_0(s, x, t) + K(s, u(s, x), x) \geq 0,$$

$$K(s, u, x) \geq k_2 |s|^p \quad \forall x \in X.$$

Then the function $u_0(s, x)$ is a solution of the problem of optimal stabilization of system (1) in the sense of the quality criterion $G_x^2(u)$, and

$$G_x^2(u_0) = \min_{u \in U} G_x^2(u) = V_0(s, x, 0).$$

Furthermore, the control $u_0(s, x)$ stabilizes Eq. (1) to exponential p-stability.